{"title":"基于能量和位移损伤指标的ASCE基准问题损伤检测","authors":"M. J. Khosraviani, O. Bahar, S. Ghasemi","doi":"10.12989/SEM.2021.77.2.151","DOIUrl":null,"url":null,"abstract":"This paper aims to present a novelty damage detection method to identify damage locations by the simultaneous use of both the energy and displacement damage indices. Using this novelty method, the damaged location and even the damaged floor are accurately detected. As a first method, a combination of the instantaneous frequency energy index (EDI) and the structural acceleration responses are used. To evaluate the first method and also present a rapid assessment method, the Displacement Damage Index (DDI), which consists of the error reliability (β) and Normal Probability Density Function (NPDF) indices, are introduced. The innovation of this method is the simultaneous use of displacement-acceleration responses during one process, which is more effective in the rapid evaluation of damage patterns with velocity vectors. In order to evaluate the effectiveness of the proposed method, various damage scenarios of the ASCE benchmark problem, and the effects of measurement noise were studied numerically. Extensive analyses show that the rapid proposed method is capable of accurately detecting the location of sparse damages through the building. Finally, the proposed method was validated by experimental studies of a six‐story steel building structure with single and multiple damage cases.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"77 1","pages":"151-165"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Damage detection using both energy and displacement damage index on the ASCE benchmark problem\",\"authors\":\"M. J. Khosraviani, O. Bahar, S. Ghasemi\",\"doi\":\"10.12989/SEM.2021.77.2.151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to present a novelty damage detection method to identify damage locations by the simultaneous use of both the energy and displacement damage indices. Using this novelty method, the damaged location and even the damaged floor are accurately detected. As a first method, a combination of the instantaneous frequency energy index (EDI) and the structural acceleration responses are used. To evaluate the first method and also present a rapid assessment method, the Displacement Damage Index (DDI), which consists of the error reliability (β) and Normal Probability Density Function (NPDF) indices, are introduced. The innovation of this method is the simultaneous use of displacement-acceleration responses during one process, which is more effective in the rapid evaluation of damage patterns with velocity vectors. In order to evaluate the effectiveness of the proposed method, various damage scenarios of the ASCE benchmark problem, and the effects of measurement noise were studied numerically. Extensive analyses show that the rapid proposed method is capable of accurately detecting the location of sparse damages through the building. Finally, the proposed method was validated by experimental studies of a six‐story steel building structure with single and multiple damage cases.\",\"PeriodicalId\":51181,\"journal\":{\"name\":\"Structural Engineering and Mechanics\",\"volume\":\"77 1\",\"pages\":\"151-165\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Engineering and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SEM.2021.77.2.151\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.77.2.151","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Damage detection using both energy and displacement damage index on the ASCE benchmark problem
This paper aims to present a novelty damage detection method to identify damage locations by the simultaneous use of both the energy and displacement damage indices. Using this novelty method, the damaged location and even the damaged floor are accurately detected. As a first method, a combination of the instantaneous frequency energy index (EDI) and the structural acceleration responses are used. To evaluate the first method and also present a rapid assessment method, the Displacement Damage Index (DDI), which consists of the error reliability (β) and Normal Probability Density Function (NPDF) indices, are introduced. The innovation of this method is the simultaneous use of displacement-acceleration responses during one process, which is more effective in the rapid evaluation of damage patterns with velocity vectors. In order to evaluate the effectiveness of the proposed method, various damage scenarios of the ASCE benchmark problem, and the effects of measurement noise were studied numerically. Extensive analyses show that the rapid proposed method is capable of accurately detecting the location of sparse damages through the building. Finally, the proposed method was validated by experimental studies of a six‐story steel building structure with single and multiple damage cases.
期刊介绍:
The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation.
The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include:
- Structural Mechanics
- Design of Civil, Building and Mechanical Structures
- Structural Optimization and Controls
- Structural Safety and Reliability
- New Structural Materials and Applications
- Effects of Wind, Earthquake and Wave Loadings on Structures
- Fluid-Structure and Soil-Structure Interactions
- AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.