Liqiang Jiang, Xingshuo Zhang, Li-zhong Jiang, Chang He, Jihong Ye, Yu Ran
{"title":"钢框架安装钢板墙的基本周期估算","authors":"Liqiang Jiang, Xingshuo Zhang, Li-zhong Jiang, Chang He, Jihong Ye, Yu Ran","doi":"10.12989/SEM.2021.78.6.715","DOIUrl":null,"url":null,"abstract":"Steel frames equipped with beam-only-connected steel panel wall (SPWF) system is one type of lateral resisting systems. The fundamental period is necessary to calculate the lateral force for seismic design, however, almost no investigations have been reported for the period estimation of SPWF structures, both in theoretically and in codes. This paper proposes a simple theoretical method to predict the fundamental periods of the SPWF structures based on the basic theory of engineering mechanics. The proposed method estimates the SPWF structures as a shear system of steel frames and a shear-flexure system of SPWs separately, and calculates the fundamental periods of the SPWF structures according to the integration of lateral stiffness of the steel frames and the SPWs along the height. Finite element method (FEM) is used to analyze the periods of 45 case steel frames or SPWF buildings with different configurations, and the FEM is validated by the test results of four specimens. The errors cannot be ignored between FEM and theoretical results due to the simplifications. Thus the finial formula is proposed by correcting the theoretical equations. The relative errors between the periods predicted from the final proposed formula and the results of FEM are no more than 4.6%. The proposed formula could be reliably used for fundamental period estimation of new, existing and damaged SPWF buildings.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"78 1","pages":"715"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fundamental period estimation of steel frames equipped with steel panel walls\",\"authors\":\"Liqiang Jiang, Xingshuo Zhang, Li-zhong Jiang, Chang He, Jihong Ye, Yu Ran\",\"doi\":\"10.12989/SEM.2021.78.6.715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Steel frames equipped with beam-only-connected steel panel wall (SPWF) system is one type of lateral resisting systems. The fundamental period is necessary to calculate the lateral force for seismic design, however, almost no investigations have been reported for the period estimation of SPWF structures, both in theoretically and in codes. This paper proposes a simple theoretical method to predict the fundamental periods of the SPWF structures based on the basic theory of engineering mechanics. The proposed method estimates the SPWF structures as a shear system of steel frames and a shear-flexure system of SPWs separately, and calculates the fundamental periods of the SPWF structures according to the integration of lateral stiffness of the steel frames and the SPWs along the height. Finite element method (FEM) is used to analyze the periods of 45 case steel frames or SPWF buildings with different configurations, and the FEM is validated by the test results of four specimens. The errors cannot be ignored between FEM and theoretical results due to the simplifications. Thus the finial formula is proposed by correcting the theoretical equations. The relative errors between the periods predicted from the final proposed formula and the results of FEM are no more than 4.6%. The proposed formula could be reliably used for fundamental period estimation of new, existing and damaged SPWF buildings.\",\"PeriodicalId\":51181,\"journal\":{\"name\":\"Structural Engineering and Mechanics\",\"volume\":\"78 1\",\"pages\":\"715\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Engineering and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SEM.2021.78.6.715\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.78.6.715","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Fundamental period estimation of steel frames equipped with steel panel walls
Steel frames equipped with beam-only-connected steel panel wall (SPWF) system is one type of lateral resisting systems. The fundamental period is necessary to calculate the lateral force for seismic design, however, almost no investigations have been reported for the period estimation of SPWF structures, both in theoretically and in codes. This paper proposes a simple theoretical method to predict the fundamental periods of the SPWF structures based on the basic theory of engineering mechanics. The proposed method estimates the SPWF structures as a shear system of steel frames and a shear-flexure system of SPWs separately, and calculates the fundamental periods of the SPWF structures according to the integration of lateral stiffness of the steel frames and the SPWs along the height. Finite element method (FEM) is used to analyze the periods of 45 case steel frames or SPWF buildings with different configurations, and the FEM is validated by the test results of four specimens. The errors cannot be ignored between FEM and theoretical results due to the simplifications. Thus the finial formula is proposed by correcting the theoretical equations. The relative errors between the periods predicted from the final proposed formula and the results of FEM are no more than 4.6%. The proposed formula could be reliably used for fundamental period estimation of new, existing and damaged SPWF buildings.
期刊介绍:
The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation.
The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include:
- Structural Mechanics
- Design of Civil, Building and Mechanical Structures
- Structural Optimization and Controls
- Structural Safety and Reliability
- New Structural Materials and Applications
- Effects of Wind, Earthquake and Wave Loadings on Structures
- Fluid-Structure and Soil-Structure Interactions
- AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.