M. Ferreira, P. Providência, R. Costa, Pedro Gala, J. Almeida
{"title":"三场混合梁柱有限元的几何和材料非线性分析","authors":"M. Ferreira, P. Providência, R. Costa, Pedro Gala, J. Almeida","doi":"10.12989/SEM.2021.79.2.211","DOIUrl":null,"url":null,"abstract":"A mixed element (3fME) for geometric and material nonlinear finite element analysis of plane skeletal structures is presented, which can reach any predefined accuracy with only one element per structural member. This element is based on the 3-field approach−an application of the Hu-Washizu principle−directly approximating the fields of displacements, strains and stresses. The presented formulation considers both (i) geometrically nonlinear behavior−by including the second-order term in the strain-displacement relations and establishing equilibrium in the deformed configuration−and (ii) materially nonlinear elastoplastic behavior, at the fibre level, automatically handling the axial-bending interaction. The illustrative examples include both compression- and tension-bending interaction, and compare the accuracy of the novel finite element with published results.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"61 1","pages":"211"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Three-field mixed beam-column finite element for geometric and material nonlinear analysis\",\"authors\":\"M. Ferreira, P. Providência, R. Costa, Pedro Gala, J. Almeida\",\"doi\":\"10.12989/SEM.2021.79.2.211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mixed element (3fME) for geometric and material nonlinear finite element analysis of plane skeletal structures is presented, which can reach any predefined accuracy with only one element per structural member. This element is based on the 3-field approach−an application of the Hu-Washizu principle−directly approximating the fields of displacements, strains and stresses. The presented formulation considers both (i) geometrically nonlinear behavior−by including the second-order term in the strain-displacement relations and establishing equilibrium in the deformed configuration−and (ii) materially nonlinear elastoplastic behavior, at the fibre level, automatically handling the axial-bending interaction. The illustrative examples include both compression- and tension-bending interaction, and compare the accuracy of the novel finite element with published results.\",\"PeriodicalId\":51181,\"journal\":{\"name\":\"Structural Engineering and Mechanics\",\"volume\":\"61 1\",\"pages\":\"211\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Engineering and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SEM.2021.79.2.211\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.79.2.211","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Three-field mixed beam-column finite element for geometric and material nonlinear analysis
A mixed element (3fME) for geometric and material nonlinear finite element analysis of plane skeletal structures is presented, which can reach any predefined accuracy with only one element per structural member. This element is based on the 3-field approach−an application of the Hu-Washizu principle−directly approximating the fields of displacements, strains and stresses. The presented formulation considers both (i) geometrically nonlinear behavior−by including the second-order term in the strain-displacement relations and establishing equilibrium in the deformed configuration−and (ii) materially nonlinear elastoplastic behavior, at the fibre level, automatically handling the axial-bending interaction. The illustrative examples include both compression- and tension-bending interaction, and compare the accuracy of the novel finite element with published results.
期刊介绍:
The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation.
The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include:
- Structural Mechanics
- Design of Civil, Building and Mechanical Structures
- Structural Optimization and Controls
- Structural Safety and Reliability
- New Structural Materials and Applications
- Effects of Wind, Earthquake and Wave Loadings on Structures
- Fluid-Structure and Soil-Structure Interactions
- AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.