金属构件疲劳裂纹扩展:数值模拟与解析解

IF 2.2 4区 工程技术 Q2 ENGINEERING, CIVIL Structural Engineering and Mechanics Pub Date : 2021-01-01 DOI:10.12989/SEM.2021.79.5.541
Danilo D’Angela, M. Ercolino
{"title":"金属构件疲劳裂纹扩展:数值模拟与解析解","authors":"Danilo D’Angela, M. Ercolino","doi":"10.12989/SEM.2021.79.5.541","DOIUrl":null,"url":null,"abstract":"The paper presents innovative approaches for the simulation of fatigue crack growth (FCG) in metallic compact tension (CT) specimens using finite element (FE) analysis and analytical solution. FE analysis is performed in ABAQUS using the extended finite element method (XFEM) coupled with the direct cyclic low-cycle fatigue (LCF) approach. Novel methods are developed for the computation of the numerical crack growth by processing the analysis outputs. The numerical modelling is validated by considering past experimental data. The analytical solution for the fatigue life evaluation is formally reviewed, and novel fatigue damage descriptors are defined. The influence of the main sample/testing features on numerical and analytical fatigue life is extensively assessed by a parametric study. The discrepancy between the numerical and analytical estimations of the fatigue life of the components is investigated and correlated to the features of the testing/modelling. A statistical-based correction factor is finally proposed in order to enhance the analytical solution.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fatigue crack growth in metallic components: Numerical modelling and analytical solution\",\"authors\":\"Danilo D’Angela, M. Ercolino\",\"doi\":\"10.12989/SEM.2021.79.5.541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents innovative approaches for the simulation of fatigue crack growth (FCG) in metallic compact tension (CT) specimens using finite element (FE) analysis and analytical solution. FE analysis is performed in ABAQUS using the extended finite element method (XFEM) coupled with the direct cyclic low-cycle fatigue (LCF) approach. Novel methods are developed for the computation of the numerical crack growth by processing the analysis outputs. The numerical modelling is validated by considering past experimental data. The analytical solution for the fatigue life evaluation is formally reviewed, and novel fatigue damage descriptors are defined. The influence of the main sample/testing features on numerical and analytical fatigue life is extensively assessed by a parametric study. The discrepancy between the numerical and analytical estimations of the fatigue life of the components is investigated and correlated to the features of the testing/modelling. A statistical-based correction factor is finally proposed in order to enhance the analytical solution.\",\"PeriodicalId\":51181,\"journal\":{\"name\":\"Structural Engineering and Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Engineering and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SEM.2021.79.5.541\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.79.5.541","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了采用有限元分析和解析解法模拟金属致密拉伸试样疲劳裂纹扩展的新方法。在ABAQUS中采用扩展有限元法(XFEM)结合直接循环低周疲劳法(LCF)进行有限元分析。通过对分析结果的处理,提出了裂纹扩展数值计算的新方法。结合以往的实验数据,对数值模拟进行了验证。对疲劳寿命评估的解析解进行了正式评述,并定义了新的疲劳损伤描述符。通过参数化研究,广泛评估了主要试样/试验特征对数值和解析疲劳寿命的影响。研究了构件疲劳寿命的数值计算与解析计算之间的差异,并将其与试验/建模的特点联系起来。最后提出了一种基于统计的修正因子,以增强解析解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fatigue crack growth in metallic components: Numerical modelling and analytical solution
The paper presents innovative approaches for the simulation of fatigue crack growth (FCG) in metallic compact tension (CT) specimens using finite element (FE) analysis and analytical solution. FE analysis is performed in ABAQUS using the extended finite element method (XFEM) coupled with the direct cyclic low-cycle fatigue (LCF) approach. Novel methods are developed for the computation of the numerical crack growth by processing the analysis outputs. The numerical modelling is validated by considering past experimental data. The analytical solution for the fatigue life evaluation is formally reviewed, and novel fatigue damage descriptors are defined. The influence of the main sample/testing features on numerical and analytical fatigue life is extensively assessed by a parametric study. The discrepancy between the numerical and analytical estimations of the fatigue life of the components is investigated and correlated to the features of the testing/modelling. A statistical-based correction factor is finally proposed in order to enhance the analytical solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Engineering and Mechanics
Structural Engineering and Mechanics 工程技术-工程:机械
CiteScore
3.80
自引率
18.20%
发文量
0
审稿时长
11 months
期刊介绍: The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation. The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include: - Structural Mechanics - Design of Civil, Building and Mechanical Structures - Structural Optimization and Controls - Structural Safety and Reliability - New Structural Materials and Applications - Effects of Wind, Earthquake and Wave Loadings on Structures - Fluid-Structure and Soil-Structure Interactions - AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.
期刊最新文献
Seismic performance of exterior r/c beam-column joint under varying axial force A model for investigating vehicle-bridge interaction under high moving speed A simplified method for free vibration analysis of wall-frames considering soil structure interaction Damage detection in structures using modal curvatures gapped smoothing method and deep learning Thermal frequency analysis of FG sandwich structure under variable temperature loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1