{"title":"考虑屈曲强度的FGP梁孔隙率分布优化","authors":"M. Farrokh, Mohammad Taheripur","doi":"10.12989/SEM.2021.79.6.711","DOIUrl":null,"url":null,"abstract":"In this paper, the porosity distribution of functionally graded porous (FGP) beams are optimized using the genetic algorithm to achieve the maximum ratio of the normalized buckling load to the beam's weight. The analytical forms for critical buckling loads of the FGP beams under different end conditions are determined analytically using principle virtual work based on the Euler and Timoshenko beam theories. The effects of Nano Graphene Platelets (NGPs) on the critical buckling load of the nanocomposite FGP beams are also taken into account. The sensitivity analyses show that porosity will reduce the buckling load-to-weight ratio of porous beams to conventional beams in some cases. Based on the optimization results, the optimum distribution of the porosity and NGPs' volume fraction are proposed for several porosity coefficients. The obtained results indicate that the optimum distribution for porosity has a symmetric sandwich-like shape while the optimum distribution for NGPs' volume fraction is uniform.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimization of porosity distribution of FGP beams considering buckling strength\",\"authors\":\"M. Farrokh, Mohammad Taheripur\",\"doi\":\"10.12989/SEM.2021.79.6.711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the porosity distribution of functionally graded porous (FGP) beams are optimized using the genetic algorithm to achieve the maximum ratio of the normalized buckling load to the beam's weight. The analytical forms for critical buckling loads of the FGP beams under different end conditions are determined analytically using principle virtual work based on the Euler and Timoshenko beam theories. The effects of Nano Graphene Platelets (NGPs) on the critical buckling load of the nanocomposite FGP beams are also taken into account. The sensitivity analyses show that porosity will reduce the buckling load-to-weight ratio of porous beams to conventional beams in some cases. Based on the optimization results, the optimum distribution of the porosity and NGPs' volume fraction are proposed for several porosity coefficients. The obtained results indicate that the optimum distribution for porosity has a symmetric sandwich-like shape while the optimum distribution for NGPs' volume fraction is uniform.\",\"PeriodicalId\":51181,\"journal\":{\"name\":\"Structural Engineering and Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Engineering and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SEM.2021.79.6.711\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.79.6.711","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Optimization of porosity distribution of FGP beams considering buckling strength
In this paper, the porosity distribution of functionally graded porous (FGP) beams are optimized using the genetic algorithm to achieve the maximum ratio of the normalized buckling load to the beam's weight. The analytical forms for critical buckling loads of the FGP beams under different end conditions are determined analytically using principle virtual work based on the Euler and Timoshenko beam theories. The effects of Nano Graphene Platelets (NGPs) on the critical buckling load of the nanocomposite FGP beams are also taken into account. The sensitivity analyses show that porosity will reduce the buckling load-to-weight ratio of porous beams to conventional beams in some cases. Based on the optimization results, the optimum distribution of the porosity and NGPs' volume fraction are proposed for several porosity coefficients. The obtained results indicate that the optimum distribution for porosity has a symmetric sandwich-like shape while the optimum distribution for NGPs' volume fraction is uniform.
期刊介绍:
The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation.
The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include:
- Structural Mechanics
- Design of Civil, Building and Mechanical Structures
- Structural Optimization and Controls
- Structural Safety and Reliability
- New Structural Materials and Applications
- Effects of Wind, Earthquake and Wave Loadings on Structures
- Fluid-Structure and Soil-Structure Interactions
- AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.