P. Nguyen, Jeong-Hoi Kim, Jong-Byung Oh, Youngshik Park, Dongkyun Lee
{"title":"具有双张预应力的隐边界肋预制混凝土板(HRS)的弯曲行为评估:实验,分析和公式","authors":"P. Nguyen, Jeong-Hoi Kim, Jong-Byung Oh, Youngshik Park, Dongkyun Lee","doi":"10.12989/SEM.2021.79.6.737","DOIUrl":null,"url":null,"abstract":"This study presents overviews of a first proposed Hidden boundary one-way Rib precast concrete Slab, so-called HRS. In order to investigate bending behaviors of the novel structural system, three specimens manufactured in factory are tested by corresponding static loading protocol experiments. Four-points bending tests in both cases of the presence and absence of topping concrete slabs are performed. Results of the experiment scrutinize how each structural component such as rebars, topping concretes, strand wires can affect the bending behavior of HRS. As regards the main originality of this paper, approximate equations showing flexural strengths for a partially prestressed concrete flagged section, like HRS, are proposed in accordance with several current global and local design standards such as ACI 318, EN: Eurocode 2, PCI, AASHTO 2002, KCI 2012 and CSA A.23. Moreover, this study provides another predicting approach using finite element analysis of MIDAS FEA for analytical performances of specimens. Through these experimental and analytical results, the general characteristic of HRS may be observed and studied for realization in the field of prestressed precast concrete industries for construction.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"79 1","pages":"737"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Flexural behaviors assessment of Hidden boundary Rib precast concrete Slab (HRS) with bi-tensional prestress: Experiments, analyses, and formulations\",\"authors\":\"P. Nguyen, Jeong-Hoi Kim, Jong-Byung Oh, Youngshik Park, Dongkyun Lee\",\"doi\":\"10.12989/SEM.2021.79.6.737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents overviews of a first proposed Hidden boundary one-way Rib precast concrete Slab, so-called HRS. In order to investigate bending behaviors of the novel structural system, three specimens manufactured in factory are tested by corresponding static loading protocol experiments. Four-points bending tests in both cases of the presence and absence of topping concrete slabs are performed. Results of the experiment scrutinize how each structural component such as rebars, topping concretes, strand wires can affect the bending behavior of HRS. As regards the main originality of this paper, approximate equations showing flexural strengths for a partially prestressed concrete flagged section, like HRS, are proposed in accordance with several current global and local design standards such as ACI 318, EN: Eurocode 2, PCI, AASHTO 2002, KCI 2012 and CSA A.23. Moreover, this study provides another predicting approach using finite element analysis of MIDAS FEA for analytical performances of specimens. Through these experimental and analytical results, the general characteristic of HRS may be observed and studied for realization in the field of prestressed precast concrete industries for construction.\",\"PeriodicalId\":51181,\"journal\":{\"name\":\"Structural Engineering and Mechanics\",\"volume\":\"79 1\",\"pages\":\"737\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Engineering and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SEM.2021.79.6.737\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.79.6.737","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Flexural behaviors assessment of Hidden boundary Rib precast concrete Slab (HRS) with bi-tensional prestress: Experiments, analyses, and formulations
This study presents overviews of a first proposed Hidden boundary one-way Rib precast concrete Slab, so-called HRS. In order to investigate bending behaviors of the novel structural system, three specimens manufactured in factory are tested by corresponding static loading protocol experiments. Four-points bending tests in both cases of the presence and absence of topping concrete slabs are performed. Results of the experiment scrutinize how each structural component such as rebars, topping concretes, strand wires can affect the bending behavior of HRS. As regards the main originality of this paper, approximate equations showing flexural strengths for a partially prestressed concrete flagged section, like HRS, are proposed in accordance with several current global and local design standards such as ACI 318, EN: Eurocode 2, PCI, AASHTO 2002, KCI 2012 and CSA A.23. Moreover, this study provides another predicting approach using finite element analysis of MIDAS FEA for analytical performances of specimens. Through these experimental and analytical results, the general characteristic of HRS may be observed and studied for realization in the field of prestressed precast concrete industries for construction.
期刊介绍:
The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation.
The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include:
- Structural Mechanics
- Design of Civil, Building and Mechanical Structures
- Structural Optimization and Controls
- Structural Safety and Reliability
- New Structural Materials and Applications
- Effects of Wind, Earthquake and Wave Loadings on Structures
- Fluid-Structure and Soil-Structure Interactions
- AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.