{"title":"纵、横曲率对壳式人行桥优化设计的影响","authors":"Shiming Liu, Bin Huang, Y. Xie","doi":"10.12989/SEM.2021.80.1.027","DOIUrl":null,"url":null,"abstract":"Shell bridges have attracted extensive interest in engineering research and practice. This paper aims to evaluate the effects of longitudinal and transverse curvatures on the optimal design of the shell bridge. For this purpose, a slant-legged steel shell footbridge with the same initial and target volumes of steel was chosen to build parametric geometric models with different curvature radii, and then topology optimization was carried out using the bi-directional evolutionary structural optimization (BESO) technique to obtain optimized designs with high structural stiffness. Furthermore, linear static analysis and eigenvalue analysis demonstrate that the displacement, von Mises effective stress, and the first-order vertical vibration frequency satisfied all the requirements of design regulations. Numerical results indicate that not only the longitudinal curvature but also the transverse curvature have a significant effect on the optimized designs of steel shell footbridge. While the mean compliance increased with the transverse curvature radius, it first decreased and then increased with the longitudinal curvature radius.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"80 1","pages":"27"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of longitudinal and transverse curvatures on optimal design of shell footbridge\",\"authors\":\"Shiming Liu, Bin Huang, Y. Xie\",\"doi\":\"10.12989/SEM.2021.80.1.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shell bridges have attracted extensive interest in engineering research and practice. This paper aims to evaluate the effects of longitudinal and transverse curvatures on the optimal design of the shell bridge. For this purpose, a slant-legged steel shell footbridge with the same initial and target volumes of steel was chosen to build parametric geometric models with different curvature radii, and then topology optimization was carried out using the bi-directional evolutionary structural optimization (BESO) technique to obtain optimized designs with high structural stiffness. Furthermore, linear static analysis and eigenvalue analysis demonstrate that the displacement, von Mises effective stress, and the first-order vertical vibration frequency satisfied all the requirements of design regulations. Numerical results indicate that not only the longitudinal curvature but also the transverse curvature have a significant effect on the optimized designs of steel shell footbridge. While the mean compliance increased with the transverse curvature radius, it first decreased and then increased with the longitudinal curvature radius.\",\"PeriodicalId\":51181,\"journal\":{\"name\":\"Structural Engineering and Mechanics\",\"volume\":\"80 1\",\"pages\":\"27\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Engineering and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SEM.2021.80.1.027\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.80.1.027","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Effects of longitudinal and transverse curvatures on optimal design of shell footbridge
Shell bridges have attracted extensive interest in engineering research and practice. This paper aims to evaluate the effects of longitudinal and transverse curvatures on the optimal design of the shell bridge. For this purpose, a slant-legged steel shell footbridge with the same initial and target volumes of steel was chosen to build parametric geometric models with different curvature radii, and then topology optimization was carried out using the bi-directional evolutionary structural optimization (BESO) technique to obtain optimized designs with high structural stiffness. Furthermore, linear static analysis and eigenvalue analysis demonstrate that the displacement, von Mises effective stress, and the first-order vertical vibration frequency satisfied all the requirements of design regulations. Numerical results indicate that not only the longitudinal curvature but also the transverse curvature have a significant effect on the optimized designs of steel shell footbridge. While the mean compliance increased with the transverse curvature radius, it first decreased and then increased with the longitudinal curvature radius.
期刊介绍:
The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation.
The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include:
- Structural Mechanics
- Design of Civil, Building and Mechanical Structures
- Structural Optimization and Controls
- Structural Safety and Reliability
- New Structural Materials and Applications
- Effects of Wind, Earthquake and Wave Loadings on Structures
- Fluid-Structure and Soil-Structure Interactions
- AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.