英国德文郡Hallsands海滩的一个埋藏基岩山谷的二维地震折射层析成像

Q2 Earth and Planetary Sciences Environmental Geosciences Pub Date : 2016-12-01 DOI:10.1306/EG.07131615014
Eric B. Avalos, D. Malone, E. Peterson, W. Anderson, R. Gehrels
{"title":"英国德文郡Hallsands海滩的一个埋藏基岩山谷的二维地震折射层析成像","authors":"Eric B. Avalos, D. Malone, E. Peterson, W. Anderson, R. Gehrels","doi":"10.1306/EG.07131615014","DOIUrl":null,"url":null,"abstract":"ABSTRACT Two-dimensional seismic refraction tomography was used to map the bedrock topography beneath Hallsands beach in southwest Devon, United Kingdom. Seismic refraction data were acquired from 11 spreads, 4 parallel to the beach and 7 normal to the beach, with either 12 or 24 geophones at 5-m (16-ft) spacing. Eight sediment cores were used to calibrate the velocity model. The bedrock consists of metasedimentary rocks that have a seismic velocity of 2100–2500 m/s (6900–8200 ft/s) and is overlain by variable amounts of gravel, peat, and muddy peat. Wood peat and peaty mud are differentiated within the peat as 700-m/s (2300-ft/s) velocity for wood peat and 1200-m/s (4000-ft/s) velocity for peaty mud. These refraction data were collected and processed in two dimensions, then imported into Petrel, a three-dimensional (3-D) geological modeling software package. The 3-D geologic model was built using the velocity attribute of the seismic refraction data. These selected data points were used to create 3-D horizons, surfaces, and contacts constraining the target bedrock surface from the overlying unconsolidated deposits. The bedrock surface beneath Hallsands beach is marked by two paleochannels. One paleochannel occurs in the north end of the beach beneath the axis of the modern valley. A second paleochannel occurs in the southern section of Hallsands beach centered along the axis of a tributary valley. Bedrock occurs at a depth of approximately −10 m (−33 ft) in the southern and northern sections of the main valley. Bedrock occurs at a depth of approximately −2 m (−6 ft) along the valley wall at the southern end of the beach east of the parking lot. Shore-perpendicular refraction lines differentiate layers within the peat, whereas shore-parallel lines delineate wood-peat, peaty-mud, and bedrock topography.","PeriodicalId":11706,"journal":{"name":"Environmental Geosciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1306/EG.07131615014","citationCount":"7","resultStr":"{\"title\":\"Two-dimensional seismic refraction tomography of a buried bedrock valley at Hallsands beach, Devon, United Kingdom\",\"authors\":\"Eric B. Avalos, D. Malone, E. Peterson, W. Anderson, R. Gehrels\",\"doi\":\"10.1306/EG.07131615014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Two-dimensional seismic refraction tomography was used to map the bedrock topography beneath Hallsands beach in southwest Devon, United Kingdom. Seismic refraction data were acquired from 11 spreads, 4 parallel to the beach and 7 normal to the beach, with either 12 or 24 geophones at 5-m (16-ft) spacing. Eight sediment cores were used to calibrate the velocity model. The bedrock consists of metasedimentary rocks that have a seismic velocity of 2100–2500 m/s (6900–8200 ft/s) and is overlain by variable amounts of gravel, peat, and muddy peat. Wood peat and peaty mud are differentiated within the peat as 700-m/s (2300-ft/s) velocity for wood peat and 1200-m/s (4000-ft/s) velocity for peaty mud. These refraction data were collected and processed in two dimensions, then imported into Petrel, a three-dimensional (3-D) geological modeling software package. The 3-D geologic model was built using the velocity attribute of the seismic refraction data. These selected data points were used to create 3-D horizons, surfaces, and contacts constraining the target bedrock surface from the overlying unconsolidated deposits. The bedrock surface beneath Hallsands beach is marked by two paleochannels. One paleochannel occurs in the north end of the beach beneath the axis of the modern valley. A second paleochannel occurs in the southern section of Hallsands beach centered along the axis of a tributary valley. Bedrock occurs at a depth of approximately −10 m (−33 ft) in the southern and northern sections of the main valley. Bedrock occurs at a depth of approximately −2 m (−6 ft) along the valley wall at the southern end of the beach east of the parking lot. Shore-perpendicular refraction lines differentiate layers within the peat, whereas shore-parallel lines delineate wood-peat, peaty-mud, and bedrock topography.\",\"PeriodicalId\":11706,\"journal\":{\"name\":\"Environmental Geosciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1306/EG.07131615014\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1306/EG.07131615014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1306/EG.07131615014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 7

摘要

利用二维地震折射层析成像技术绘制了英国德文郡西南部Hallsands海滩的基岩地形。地震折射数据来自11个分布,4个与海滩平行,7个与海滩正方向,在5米(16英尺)的间距上使用12或24个检波器。8个沉积物岩心被用来校准速度模型。基岩由变质沉积岩组成,其地震速度为2100-2500米/秒(6900-8200英尺/秒),并被不同数量的砾石、泥炭和泥炭覆盖。在泥炭中,木泥炭和泥炭泥的流速分别为700米/秒(2300英尺/秒)和1200米/秒(4000英尺/秒)。这些折射数据被采集并进行二维处理,然后导入到一个三维地质建模软件包Petrel中。利用地震折射数据的速度属性,建立了三维地质模型。这些选定的数据点被用来创建三维层位、表面和接触面,将目标基岩表面与上覆未固结沉积物隔离开来。哈尔桑兹海滩下的基岩面以两条古河道为标志。一条古河道位于现代山谷轴线下方的海滩北端。第二条古河道位于霍尔桑兹海滩的南部,以一条支流山谷的轴线为中心。基岩位于主山谷的南部和北部,深度约为- 10米(- 33英尺)。基岩位于停车场以东海滩南端的山谷壁,深度约为- 2米(- 6英尺)。海岸垂直折射率线区分泥炭层,而海岸平行线描绘了木泥炭、泥炭泥和基岩地形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two-dimensional seismic refraction tomography of a buried bedrock valley at Hallsands beach, Devon, United Kingdom
ABSTRACT Two-dimensional seismic refraction tomography was used to map the bedrock topography beneath Hallsands beach in southwest Devon, United Kingdom. Seismic refraction data were acquired from 11 spreads, 4 parallel to the beach and 7 normal to the beach, with either 12 or 24 geophones at 5-m (16-ft) spacing. Eight sediment cores were used to calibrate the velocity model. The bedrock consists of metasedimentary rocks that have a seismic velocity of 2100–2500 m/s (6900–8200 ft/s) and is overlain by variable amounts of gravel, peat, and muddy peat. Wood peat and peaty mud are differentiated within the peat as 700-m/s (2300-ft/s) velocity for wood peat and 1200-m/s (4000-ft/s) velocity for peaty mud. These refraction data were collected and processed in two dimensions, then imported into Petrel, a three-dimensional (3-D) geological modeling software package. The 3-D geologic model was built using the velocity attribute of the seismic refraction data. These selected data points were used to create 3-D horizons, surfaces, and contacts constraining the target bedrock surface from the overlying unconsolidated deposits. The bedrock surface beneath Hallsands beach is marked by two paleochannels. One paleochannel occurs in the north end of the beach beneath the axis of the modern valley. A second paleochannel occurs in the southern section of Hallsands beach centered along the axis of a tributary valley. Bedrock occurs at a depth of approximately −10 m (−33 ft) in the southern and northern sections of the main valley. Bedrock occurs at a depth of approximately −2 m (−6 ft) along the valley wall at the southern end of the beach east of the parking lot. Shore-perpendicular refraction lines differentiate layers within the peat, whereas shore-parallel lines delineate wood-peat, peaty-mud, and bedrock topography.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Geosciences
Environmental Geosciences Earth and Planetary Sciences-Earth and Planetary Sciences (all)
自引率
0.00%
发文量
0
期刊最新文献
Seismic criteria and structural styles for half graben differential inversion: Implication for hydrocarbon accumulation, Abu Sennan blocks, Western Desert, Egypt Evidence of hydrothermal alteration in Devonian shales from the Eastern Gas Shales Project 2 core of the Rome trough, Appalachian Basin, United States The Midwest Regional Carbon Sequestration Partnership petroleum fields database: Compilation, utilization, and support for CCUS activities Presence of hydrocarbons on Mars: A possibility Potential for carbon sequestration in the Hemlock Formation of the Cook Inlet basin, Alaska
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1