估算三种树能作物树芽地上生物量的异速生长模型

IF 1.4 4区 农林科学 Q2 FORESTRY Dendrobiology Pub Date : 2021-01-01 DOI:10.12657/DENBIO.085.003
J. Ríos-Saucedo, Eduardo Acuña-Carmona, Jorge Cancino-Cancino, J. Corral‐Rivas, R. Rosales-Serna, L. M. Valenzuela-Núñez
{"title":"估算三种树能作物树芽地上生物量的异速生长模型","authors":"J. Ríos-Saucedo, Eduardo Acuña-Carmona, Jorge Cancino-Cancino, J. Corral‐Rivas, R. Rosales-Serna, L. M. Valenzuela-Núñez","doi":"10.12657/DENBIO.085.003","DOIUrl":null,"url":null,"abstract":"Recurrent problems have been observed for biomass measurement in tree sprouts, mainly dueto differences in patterns of biomass distribution and the bias generated by using models for mature trees.The objective of this research was to evaluate models to estimate aboveground biomass in sprouts from two-year-old stumps of Short Rotation Woody Crops (SRWC) used for energetic purposes. The study was conducted in Central Chile (Bío-Bío region) under a complete block design and four replications.Three plant species were included: Eucalyptus globulus, E. denticulata, and Acacia dealbata, established in three population densities (5,000, 10,000 and 15,000 trees per ha). Two groups of nonlinear models wereused on three independent variables: root collar diameter (squared mean of two dominant stems), height (mean of two dominant stems) and number of epicormic stems. In the allometric model, the total aboveground biomass and the aboveground biomass by component were explained as the product of the mean square of the root collar diameter, mean height of the two dominant new sprouts and total number of epicormic sprouts as the predictive variable. Values of coefficient of determination (R2) ranged from 0.78 to 0.95 and RMSE ranged from 168 to 913 g. The species of E. globulus showed higher RMSE for biomass estimation in the all components except the branch component. The inclusion of dummy variables to identify the differences in each parameter of the models explained the seasonalityof the biomass accumulation in tree sprouts at 10, 21, and 31 months of age, improving the model goodness of fit RMSE by 27%. Accurate prediction of sprouts aboveground biomass was obtained by the models only evaluating the two dominant epicormic sprouts in the stump, avoiding the need of individual sprouts evaluation or using destructive methods for biomass measurement.","PeriodicalId":55182,"journal":{"name":"Dendrobiology","volume":"14 1","pages":"19-29"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Allometric models for estimating aboveground biomass in tree sprouts of three dendroenergetic crops\",\"authors\":\"J. Ríos-Saucedo, Eduardo Acuña-Carmona, Jorge Cancino-Cancino, J. Corral‐Rivas, R. Rosales-Serna, L. M. Valenzuela-Núñez\",\"doi\":\"10.12657/DENBIO.085.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recurrent problems have been observed for biomass measurement in tree sprouts, mainly dueto differences in patterns of biomass distribution and the bias generated by using models for mature trees.The objective of this research was to evaluate models to estimate aboveground biomass in sprouts from two-year-old stumps of Short Rotation Woody Crops (SRWC) used for energetic purposes. The study was conducted in Central Chile (Bío-Bío region) under a complete block design and four replications.Three plant species were included: Eucalyptus globulus, E. denticulata, and Acacia dealbata, established in three population densities (5,000, 10,000 and 15,000 trees per ha). Two groups of nonlinear models wereused on three independent variables: root collar diameter (squared mean of two dominant stems), height (mean of two dominant stems) and number of epicormic stems. In the allometric model, the total aboveground biomass and the aboveground biomass by component were explained as the product of the mean square of the root collar diameter, mean height of the two dominant new sprouts and total number of epicormic sprouts as the predictive variable. Values of coefficient of determination (R2) ranged from 0.78 to 0.95 and RMSE ranged from 168 to 913 g. The species of E. globulus showed higher RMSE for biomass estimation in the all components except the branch component. The inclusion of dummy variables to identify the differences in each parameter of the models explained the seasonalityof the biomass accumulation in tree sprouts at 10, 21, and 31 months of age, improving the model goodness of fit RMSE by 27%. Accurate prediction of sprouts aboveground biomass was obtained by the models only evaluating the two dominant epicormic sprouts in the stump, avoiding the need of individual sprouts evaluation or using destructive methods for biomass measurement.\",\"PeriodicalId\":55182,\"journal\":{\"name\":\"Dendrobiology\",\"volume\":\"14 1\",\"pages\":\"19-29\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dendrobiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.12657/DENBIO.085.003\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dendrobiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.12657/DENBIO.085.003","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 1

摘要

由于生物量分布模式的差异和使用成熟树木模型所产生的偏差,在测量树芽生物量时已经观察到反复出现的问题。本研究的目的是评估用于能量利用的短轮作木本作物(SRWC) 2年树桩芽的地上生物量估算模型。该研究是在智利中部(Bío-Bío地区)进行的,采用完整的区域设计和四次重复。包括3种植物:蓝桉(Eucalyptus globulus)、小齿桉(E. denticulata)和金合欢(Acacia dealbata),种群密度分别为5,000、10,000和15,000棵/公顷。两组非线性模型分别用于三个自变量:根颈直径(两个优势茎的平方平均值)、高度(两个优势茎的平均值)和外生茎数。在异速生长模型中,地上总生物量和地上生物量按分量解释为根颈直径均方根、两个优势新芽平均高和外生芽总数的乘积。测定系数(R2)为0.78 ~ 0.95,均方根误差(RMSE)为168 ~ 913 g。除分枝成分外,其他成分的均方根误差均较高。通过引入虚拟变量来识别模型各参数的差异,解释了10、21和31月龄时树芽生物量积累的季节性,将模型的拟合优度RMSE提高了27%。该模型仅对树桩上两个优势外胚芽进行评估,避免了对单个芽进行评估或使用破坏性方法进行生物量测量,从而获得了准确的地上芽生物量预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Allometric models for estimating aboveground biomass in tree sprouts of three dendroenergetic crops
Recurrent problems have been observed for biomass measurement in tree sprouts, mainly dueto differences in patterns of biomass distribution and the bias generated by using models for mature trees.The objective of this research was to evaluate models to estimate aboveground biomass in sprouts from two-year-old stumps of Short Rotation Woody Crops (SRWC) used for energetic purposes. The study was conducted in Central Chile (Bío-Bío region) under a complete block design and four replications.Three plant species were included: Eucalyptus globulus, E. denticulata, and Acacia dealbata, established in three population densities (5,000, 10,000 and 15,000 trees per ha). Two groups of nonlinear models wereused on three independent variables: root collar diameter (squared mean of two dominant stems), height (mean of two dominant stems) and number of epicormic stems. In the allometric model, the total aboveground biomass and the aboveground biomass by component were explained as the product of the mean square of the root collar diameter, mean height of the two dominant new sprouts and total number of epicormic sprouts as the predictive variable. Values of coefficient of determination (R2) ranged from 0.78 to 0.95 and RMSE ranged from 168 to 913 g. The species of E. globulus showed higher RMSE for biomass estimation in the all components except the branch component. The inclusion of dummy variables to identify the differences in each parameter of the models explained the seasonalityof the biomass accumulation in tree sprouts at 10, 21, and 31 months of age, improving the model goodness of fit RMSE by 27%. Accurate prediction of sprouts aboveground biomass was obtained by the models only evaluating the two dominant epicormic sprouts in the stump, avoiding the need of individual sprouts evaluation or using destructive methods for biomass measurement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dendrobiology
Dendrobiology 农林科学-林学
CiteScore
2.20
自引率
11.10%
发文量
17
审稿时长
>12 weeks
期刊介绍: Dendrobiology publishes original research articles and review articles related to the biology of trees and shrubs.
期刊最新文献
Population dynamics of Pentaclethra macroloba, a hyperdominant tree in the Amazon River estuary Among the trees: shade promotes the growth and higher survival of juvenile toads Revisiting the taxonomy of Populus lasiocarpa × P. wilsonii hybrids Ophiostomatatoid fungi (Ascomycota) associated with Ips acuminatus (Coleoptera) in eastern Poland Development of a SNaPshot assay for the genotyping of organellar SNPs in four closely related pines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1