{"title":"硼-硫酸-草酸电解液降压阳极氧化疏孔膜层制备及表征","authors":"王加余, 李澄, 尹成勇, 李西娟, 王艳慧","doi":"10.11903/1002.6495.2013.116","DOIUrl":null,"url":null,"abstract":"A well ordered porous oxide film on aluminum alloy was prepared by a three-stage process in electrolyte of boric-sulfuric-oxalic acids. The relevant growth mechanism of oxide film in the processes with modes of galvanostatic and reduced voltage was elaborated. The morphology and microstructure of the oxide films were characterized by scanning electronic microscopy(SEM). The corrosion performance of the films in 3.5% NaCl solution was examined by electrochemical impedance spectroscopy and potentiodynamic polarization curves. The results show that the anodic film exhibits to be regular and dense with pore diameter of 10~13 nm. Moreover, the electrochemical behavior of anodic oxide film could be described as that the impedance and corrosion resistance was increased with the increasing thickness of the film and the cell wall.","PeriodicalId":10727,"journal":{"name":"腐蚀科学与防护技术","volume":"26 1","pages":"154-158"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"硼-硫酸-草酸电解液降压阳极氧化疏孔膜层制备及表征\",\"authors\":\"王加余, 李澄, 尹成勇, 李西娟, 王艳慧\",\"doi\":\"10.11903/1002.6495.2013.116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A well ordered porous oxide film on aluminum alloy was prepared by a three-stage process in electrolyte of boric-sulfuric-oxalic acids. The relevant growth mechanism of oxide film in the processes with modes of galvanostatic and reduced voltage was elaborated. The morphology and microstructure of the oxide films were characterized by scanning electronic microscopy(SEM). The corrosion performance of the films in 3.5% NaCl solution was examined by electrochemical impedance spectroscopy and potentiodynamic polarization curves. The results show that the anodic film exhibits to be regular and dense with pore diameter of 10~13 nm. Moreover, the electrochemical behavior of anodic oxide film could be described as that the impedance and corrosion resistance was increased with the increasing thickness of the film and the cell wall.\",\"PeriodicalId\":10727,\"journal\":{\"name\":\"腐蚀科学与防护技术\",\"volume\":\"26 1\",\"pages\":\"154-158\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"腐蚀科学与防护技术\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.11903/1002.6495.2013.116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"腐蚀科学与防护技术","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.11903/1002.6495.2013.116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
A well ordered porous oxide film on aluminum alloy was prepared by a three-stage process in electrolyte of boric-sulfuric-oxalic acids. The relevant growth mechanism of oxide film in the processes with modes of galvanostatic and reduced voltage was elaborated. The morphology and microstructure of the oxide films were characterized by scanning electronic microscopy(SEM). The corrosion performance of the films in 3.5% NaCl solution was examined by electrochemical impedance spectroscopy and potentiodynamic polarization curves. The results show that the anodic film exhibits to be regular and dense with pore diameter of 10~13 nm. Moreover, the electrochemical behavior of anodic oxide film could be described as that the impedance and corrosion resistance was increased with the increasing thickness of the film and the cell wall.
期刊介绍:
Corrosion Science and Protection Technology is approved by the General Administration of Press and Publication of the State Council, the Chinese Academy of Sciences, the Chinese Academy of Sciences Institute of Metals organized by the domestic and international public circulation of national periodicals metal surface treatment academic journals.
The journal is a professional and technical publication. It reports the scientific and technological achievements in the field of metal corrosion and protection, and publishes research reports, reviews, technical reports, research briefs, failure analysis, experience exchange, etc. The readers are engaged in the field of metal corrosion and protection. The target readers are scientific and technological personnel engaged in metal corrosion and protection and teachers and students of related professional colleges and universities.
Corrosion Science and Protection Technology is indexed in CSCD, CSTPCD, CA,MA,SA and other authoritative databases.