谷氨酸信号在肠脑通讯中的生理意义。

T. Kondoh, H. Mallick, K. Torii
{"title":"谷氨酸信号在肠脑通讯中的生理意义。","authors":"T. Kondoh, H. Mallick, K. Torii","doi":"10.12938/BIFIDUS.28.109","DOIUrl":null,"url":null,"abstract":"L -Glutamate is involved in the perception of umami taste, intermediary metabolism, and excitatory neurotransmission. In addition, recent studies have uncovered a variety of physiological roles for dietary glutamate, as evidenced by the fact that intragastric glutamate infusions induce flavor preference learning in rats. Moreover, glutamate increases digestive juice secretion and gastric emptying of protein-rich meals. Glutamate levels in blood and brain remain stable all day long even after the food intake since most of glutamate absorbed is oxidized in the mucosa of the small intestine as a primary energy source. Chronic ad libitum ingestion of glutamate solution contributes to reducing weight gain, fat deposition, and plasma leptin levels in comparison to ingestion of water. Glutamate receptors and their cellular transduction molecules have recently been identified in gut epithelial cells. Stimulation of gut glutamate receptors enhances the apical expression of glutamate transporters and also triggers the release of nitric oxide. Nitric oxide in its turn induces gut serotonin release, which increases vagal afferent inputs to different brain regions. Notably, three brain areas, i.e., the medial preoptic area, the dorsomedial nucleus of the hypothalamus, and the habenular nucleus are activated by intragastric glutamate infusions. Total subdiaphragmatic vagotomy abolishes this response. Consistent with the above, vagotomy specifically reduces the overall intake of glutamate. Taken together, these findings contribute to the growing body of evidence indicating that glutamate signaling via dedicated taste and gut receptors influences multiple physiological functions including gut secretion, motility, digestion, absorption, metabolism and energy homeostasis.","PeriodicalId":90114,"journal":{"name":"Bioscience and microflora","volume":"28 1","pages":"109-118"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Physiological significance of glutamate signaling in gut-brain communication.\",\"authors\":\"T. Kondoh, H. Mallick, K. Torii\",\"doi\":\"10.12938/BIFIDUS.28.109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"L -Glutamate is involved in the perception of umami taste, intermediary metabolism, and excitatory neurotransmission. In addition, recent studies have uncovered a variety of physiological roles for dietary glutamate, as evidenced by the fact that intragastric glutamate infusions induce flavor preference learning in rats. Moreover, glutamate increases digestive juice secretion and gastric emptying of protein-rich meals. Glutamate levels in blood and brain remain stable all day long even after the food intake since most of glutamate absorbed is oxidized in the mucosa of the small intestine as a primary energy source. Chronic ad libitum ingestion of glutamate solution contributes to reducing weight gain, fat deposition, and plasma leptin levels in comparison to ingestion of water. Glutamate receptors and their cellular transduction molecules have recently been identified in gut epithelial cells. Stimulation of gut glutamate receptors enhances the apical expression of glutamate transporters and also triggers the release of nitric oxide. Nitric oxide in its turn induces gut serotonin release, which increases vagal afferent inputs to different brain regions. Notably, three brain areas, i.e., the medial preoptic area, the dorsomedial nucleus of the hypothalamus, and the habenular nucleus are activated by intragastric glutamate infusions. Total subdiaphragmatic vagotomy abolishes this response. Consistent with the above, vagotomy specifically reduces the overall intake of glutamate. Taken together, these findings contribute to the growing body of evidence indicating that glutamate signaling via dedicated taste and gut receptors influences multiple physiological functions including gut secretion, motility, digestion, absorption, metabolism and energy homeostasis.\",\"PeriodicalId\":90114,\"journal\":{\"name\":\"Bioscience and microflora\",\"volume\":\"28 1\",\"pages\":\"109-118\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience and microflora\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12938/BIFIDUS.28.109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience and microflora","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12938/BIFIDUS.28.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

L -谷氨酸参与鲜味感知、中间代谢和兴奋性神经传递。此外,最近的研究发现了膳食谷氨酸的多种生理作用,如谷氨酸灌胃可诱导大鼠的风味偏好学习。此外,谷氨酸增加消化液分泌和富含蛋白质食物的胃排空。即使在食物摄入后,血液和大脑中的谷氨酸水平也会全天保持稳定,因为大部分被吸收的谷氨酸作为主要能量来源在小肠粘膜中被氧化。与喝水相比,长期随意摄入谷氨酸溶液有助于减少体重增加、脂肪沉积和血浆瘦素水平。最近在肠上皮细胞中发现了谷氨酸受体及其细胞转导分子。肠道谷氨酸受体的刺激增强了谷氨酸转运体的顶端表达,也触发了一氧化氮的释放。一氧化氮反过来诱导肠道血清素释放,从而增加迷走神经传入输入到不同的大脑区域。值得注意的是,胃内注入谷氨酸激活了三个脑区,即内侧视前区、下丘脑背内侧核和缰核。全膈下迷走神经切开术消除了这种反应。与上述一致,迷走神经切开术特别减少了谷氨酸的总摄入量。综上所述,这些发现提供了越来越多的证据,表明谷氨酸信号通过专门的味觉和肠道受体影响多种生理功能,包括肠道分泌、运动、消化、吸收、代谢和能量稳态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physiological significance of glutamate signaling in gut-brain communication.
L -Glutamate is involved in the perception of umami taste, intermediary metabolism, and excitatory neurotransmission. In addition, recent studies have uncovered a variety of physiological roles for dietary glutamate, as evidenced by the fact that intragastric glutamate infusions induce flavor preference learning in rats. Moreover, glutamate increases digestive juice secretion and gastric emptying of protein-rich meals. Glutamate levels in blood and brain remain stable all day long even after the food intake since most of glutamate absorbed is oxidized in the mucosa of the small intestine as a primary energy source. Chronic ad libitum ingestion of glutamate solution contributes to reducing weight gain, fat deposition, and plasma leptin levels in comparison to ingestion of water. Glutamate receptors and their cellular transduction molecules have recently been identified in gut epithelial cells. Stimulation of gut glutamate receptors enhances the apical expression of glutamate transporters and also triggers the release of nitric oxide. Nitric oxide in its turn induces gut serotonin release, which increases vagal afferent inputs to different brain regions. Notably, three brain areas, i.e., the medial preoptic area, the dorsomedial nucleus of the hypothalamus, and the habenular nucleus are activated by intragastric glutamate infusions. Total subdiaphragmatic vagotomy abolishes this response. Consistent with the above, vagotomy specifically reduces the overall intake of glutamate. Taken together, these findings contribute to the growing body of evidence indicating that glutamate signaling via dedicated taste and gut receptors influences multiple physiological functions including gut secretion, motility, digestion, absorption, metabolism and energy homeostasis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reading Attitudes in Vietnam: Initial Study of the Early School Years. Early probiotic supplementation for the prevention of atopic disease in newborns-probiotics and the hygiene hypothesis-. Metabolism of Isoflavones Found in the Pueraria thomsonii Flower by Human Intestinal Microbiota. Effects of Bifidobacterium bifidum G9-1 on Nasal Symptoms in a Guinea Pig Model of Experimental Allergic Rhinitis. Influence of Lactobacillus pentosus S-PT84 Ingestion on the Mucosal Immunity of Healthy and Salmonella Typhimurium-Infected Mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1