二氧化碳和水蒸气的加入对球形膨胀氢/空气预混火焰动力学行为的影响

IF 1.2 4区 工程技术 Q3 THERMODYNAMICS Journal of Thermal Science and Technology Pub Date : 2021-01-01 DOI:10.1299/JTST.2021JTST0026
T. Katsumi, Y. Yoshida, R. Nakagawa, Shinya Yazawa, M. Kumada, Daisuke Sato, T. Aung, N. Chaumeix, S. Kadowaki
{"title":"二氧化碳和水蒸气的加入对球形膨胀氢/空气预混火焰动力学行为的影响","authors":"T. Katsumi, Y. Yoshida, R. Nakagawa, Shinya Yazawa, M. Kumada, Daisuke Sato, T. Aung, N. Chaumeix, S. Kadowaki","doi":"10.1299/JTST.2021JTST0026","DOIUrl":null,"url":null,"abstract":"experimental data under a certain condition but also to create the mathematical model for the prediction of flame propagation velocity under various conditions. Thus, it is significant to understand the characteristics of dynamic behavior of hydrogen/air premixed flames and to elucidate the effects of addition of inert gas, i.e. carbon dioxide CO 2 and water vapor H 2 O. We performed the experiments of hydrogen explosion in two types of closed chambers to observe spherically expanding flames using Schlieren photography. Wrinkles on the flame surface were clearly observed in low equivalence ratios. Analyzing the Schlieren images, the flame propagation velocity depending on the flame radius was obtained. Increasing the addition of inert gas, the propagation velocity decreased, especially in the case of CO 2 addition. The propagation velocity increased monotonically as the flame radius became larger. The appearance of flame acceleration was found, which was caused by the evolution of wrinkles on the flame surface. Moreover, the Markstein length decreased as the concentration of inert gas became higher, indicating that the addition of inert gas promoted the instability of hydrogen flames. Furthermore, the wrinkling factor, closely related with the increment in propagation velocity, decreased as the inert-gas concentration became higher. The wrinkling factor normalized by the propagation velocity of flat flame increased, on the other hand, under the conditions of high inert-gas concentration, except for near the quenching conditions. This indicated that the addition of CO 2 or H 2 O promoted the unstable motion of hydrogen flames, which could be due to the enhancement of the diffusive-thermal effect. Based on the characteristics of dynamic behavior of hydrogen flames, the parameters used in the mathematical model on propagation velocity including flame acceleration was obtained, and then the flame propagation velocity under various conditions was predicted. Intrinsic","PeriodicalId":17405,"journal":{"name":"Journal of Thermal Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The effects of addition of carbon dioxide and water vapor on the dynamic behavior of spherically expanding hydrogen/air premixed flames\",\"authors\":\"T. Katsumi, Y. Yoshida, R. Nakagawa, Shinya Yazawa, M. Kumada, Daisuke Sato, T. Aung, N. Chaumeix, S. Kadowaki\",\"doi\":\"10.1299/JTST.2021JTST0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"experimental data under a certain condition but also to create the mathematical model for the prediction of flame propagation velocity under various conditions. Thus, it is significant to understand the characteristics of dynamic behavior of hydrogen/air premixed flames and to elucidate the effects of addition of inert gas, i.e. carbon dioxide CO 2 and water vapor H 2 O. We performed the experiments of hydrogen explosion in two types of closed chambers to observe spherically expanding flames using Schlieren photography. Wrinkles on the flame surface were clearly observed in low equivalence ratios. Analyzing the Schlieren images, the flame propagation velocity depending on the flame radius was obtained. Increasing the addition of inert gas, the propagation velocity decreased, especially in the case of CO 2 addition. The propagation velocity increased monotonically as the flame radius became larger. The appearance of flame acceleration was found, which was caused by the evolution of wrinkles on the flame surface. Moreover, the Markstein length decreased as the concentration of inert gas became higher, indicating that the addition of inert gas promoted the instability of hydrogen flames. Furthermore, the wrinkling factor, closely related with the increment in propagation velocity, decreased as the inert-gas concentration became higher. The wrinkling factor normalized by the propagation velocity of flat flame increased, on the other hand, under the conditions of high inert-gas concentration, except for near the quenching conditions. This indicated that the addition of CO 2 or H 2 O promoted the unstable motion of hydrogen flames, which could be due to the enhancement of the diffusive-thermal effect. Based on the characteristics of dynamic behavior of hydrogen flames, the parameters used in the mathematical model on propagation velocity including flame acceleration was obtained, and then the flame propagation velocity under various conditions was predicted. Intrinsic\",\"PeriodicalId\":17405,\"journal\":{\"name\":\"Journal of Thermal Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1299/JTST.2021JTST0026\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1299/JTST.2021JTST0026","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 6

摘要

在一定条件下的实验数据还可以建立数学模型,用于预测各种条件下火焰的传播速度。因此,了解氢气/空气预混火焰的动态特性,阐明惰性气体(即二氧化碳、二氧化碳和水蒸气h2o)的加入对火焰的影响具有重要意义。我们利用影影摄影技术在两种密闭腔室中进行了氢气爆炸实验,观察火焰的球形膨胀。在较低的等效比下,火焰表面有明显的褶皱。通过对纹影图像的分析,得到了随火焰半径变化的火焰传播速度。随着惰性气体添加量的增加,扩散速度减小,特别是在CO 2添加量的情况下。随着火焰半径的增大,传播速度单调增加。发现了火焰加速的现象,这是由于火焰表面皱纹的演变引起的。Markstein长度随惰性气体浓度的增加而减小,说明惰性气体的加入促进了氢火焰的不稳定性。此外,随着惰性气体浓度的增加,与传播速度增加密切相关的起皱系数减小。另一方面,在高惰性气体浓度条件下,除接近淬火条件外,平焰传播速度归一化的起皱系数增加。这表明co2或h2o的加入促进了氢火焰的不稳定运动,这可能是由于扩散热效应的增强。根据氢气火焰的动态特性,获得了火焰传播速度数学模型中使用的包括火焰加速度在内的参数,并对不同条件下火焰的传播速度进行了预测。内在
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effects of addition of carbon dioxide and water vapor on the dynamic behavior of spherically expanding hydrogen/air premixed flames
experimental data under a certain condition but also to create the mathematical model for the prediction of flame propagation velocity under various conditions. Thus, it is significant to understand the characteristics of dynamic behavior of hydrogen/air premixed flames and to elucidate the effects of addition of inert gas, i.e. carbon dioxide CO 2 and water vapor H 2 O. We performed the experiments of hydrogen explosion in two types of closed chambers to observe spherically expanding flames using Schlieren photography. Wrinkles on the flame surface were clearly observed in low equivalence ratios. Analyzing the Schlieren images, the flame propagation velocity depending on the flame radius was obtained. Increasing the addition of inert gas, the propagation velocity decreased, especially in the case of CO 2 addition. The propagation velocity increased monotonically as the flame radius became larger. The appearance of flame acceleration was found, which was caused by the evolution of wrinkles on the flame surface. Moreover, the Markstein length decreased as the concentration of inert gas became higher, indicating that the addition of inert gas promoted the instability of hydrogen flames. Furthermore, the wrinkling factor, closely related with the increment in propagation velocity, decreased as the inert-gas concentration became higher. The wrinkling factor normalized by the propagation velocity of flat flame increased, on the other hand, under the conditions of high inert-gas concentration, except for near the quenching conditions. This indicated that the addition of CO 2 or H 2 O promoted the unstable motion of hydrogen flames, which could be due to the enhancement of the diffusive-thermal effect. Based on the characteristics of dynamic behavior of hydrogen flames, the parameters used in the mathematical model on propagation velocity including flame acceleration was obtained, and then the flame propagation velocity under various conditions was predicted. Intrinsic
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
0
审稿时长
5 months
期刊介绍: JTST covers a variety of fields in thermal engineering including heat and mass transfer, thermodynamics, combustion, bio-heat transfer, micro- and macro-scale transport phenomena and practical thermal problems in industrial applications.
期刊最新文献
Development of a process for thin metal plates with electromagnetic pressure and surface tension Validation of Soave–Redlich–Kwong equation of state coupled with a classical mixing rule for sound speed of non-ideal gas mixture of oxygen-hydrogen as liquid rocket propellants Molecular dynamics simulation of energy transfer in reaction process near supported nanoparticle catalyst Improvement of isothermal characteristic of isothermal chamber by filling with graded copper foam Combined effects of diesel energy ratio and diesel injection nozzle diameter on natural gas high pressure direct injection engine with EGR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1