{"title":"热驱动抽水系统在农村微电网系统中的潜在应用实验研究","authors":"Y. Abirham, F. Mikšík, K. Thu, T. Miyazaki","doi":"10.1299/jtst.21-00323","DOIUrl":null,"url":null,"abstract":"Renewable energy-based microgrid systems are widely being studied as electrification methods for rural communities in developing countries. Waste heat generated by the components of the microgrid systems, such as the biogas driven generators (BDG), presents the potential of utilizing the low-grade heat in a way that can contribute to the sustainability of such energy systems. From the points of view of affordability, local manufacturability, and applicability for agriculture, thermally driven pumps (TDP) may be attractive for coupling with such microgrid systems. Therefore, the current study has focused on the development of a new type of thermally driven pumping system as a potential waste heat utilization component for microgrid applications in rural areas. A liquid piston-type TDP concept without moving parts, except few valves, was developed and parametric experimental investigations were carried out. The performance and characteristics of the system were studied, which revealed that the proposed system has a superior performance compared to the literature. It was also found that the system performance strongly depends on the heat addition rate and delivery capacity of the system, which are suitable characteristics for the intended application. Hence, the experimental data were used to estimate whether the proposed system can pump enough water that needs to be supplied for the biogas production to supply a 10 kW BDG unit of a microgrid. It was found that 87 – 93% of the total pumped water (13 – 27 m 3 ) would be available for agricultural and other purposes while only 6 – 13% would need to be fed to the biogas digester. Generally, the results seem to be promising, and yet there are potentials for the optimization and improvement of the proposed system, hence they have been pointed out.","PeriodicalId":17405,"journal":{"name":"Journal of Thermal Science and Technology","volume":"9 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of a thermally driven pumping system for a potential application with a microgrid system for rural communities\",\"authors\":\"Y. Abirham, F. Mikšík, K. Thu, T. Miyazaki\",\"doi\":\"10.1299/jtst.21-00323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Renewable energy-based microgrid systems are widely being studied as electrification methods for rural communities in developing countries. Waste heat generated by the components of the microgrid systems, such as the biogas driven generators (BDG), presents the potential of utilizing the low-grade heat in a way that can contribute to the sustainability of such energy systems. From the points of view of affordability, local manufacturability, and applicability for agriculture, thermally driven pumps (TDP) may be attractive for coupling with such microgrid systems. Therefore, the current study has focused on the development of a new type of thermally driven pumping system as a potential waste heat utilization component for microgrid applications in rural areas. A liquid piston-type TDP concept without moving parts, except few valves, was developed and parametric experimental investigations were carried out. The performance and characteristics of the system were studied, which revealed that the proposed system has a superior performance compared to the literature. It was also found that the system performance strongly depends on the heat addition rate and delivery capacity of the system, which are suitable characteristics for the intended application. Hence, the experimental data were used to estimate whether the proposed system can pump enough water that needs to be supplied for the biogas production to supply a 10 kW BDG unit of a microgrid. It was found that 87 – 93% of the total pumped water (13 – 27 m 3 ) would be available for agricultural and other purposes while only 6 – 13% would need to be fed to the biogas digester. Generally, the results seem to be promising, and yet there are potentials for the optimization and improvement of the proposed system, hence they have been pointed out.\",\"PeriodicalId\":17405,\"journal\":{\"name\":\"Journal of Thermal Science and Technology\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1299/jtst.21-00323\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1299/jtst.21-00323","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Experimental investigation of a thermally driven pumping system for a potential application with a microgrid system for rural communities
Renewable energy-based microgrid systems are widely being studied as electrification methods for rural communities in developing countries. Waste heat generated by the components of the microgrid systems, such as the biogas driven generators (BDG), presents the potential of utilizing the low-grade heat in a way that can contribute to the sustainability of such energy systems. From the points of view of affordability, local manufacturability, and applicability for agriculture, thermally driven pumps (TDP) may be attractive for coupling with such microgrid systems. Therefore, the current study has focused on the development of a new type of thermally driven pumping system as a potential waste heat utilization component for microgrid applications in rural areas. A liquid piston-type TDP concept without moving parts, except few valves, was developed and parametric experimental investigations were carried out. The performance and characteristics of the system were studied, which revealed that the proposed system has a superior performance compared to the literature. It was also found that the system performance strongly depends on the heat addition rate and delivery capacity of the system, which are suitable characteristics for the intended application. Hence, the experimental data were used to estimate whether the proposed system can pump enough water that needs to be supplied for the biogas production to supply a 10 kW BDG unit of a microgrid. It was found that 87 – 93% of the total pumped water (13 – 27 m 3 ) would be available for agricultural and other purposes while only 6 – 13% would need to be fed to the biogas digester. Generally, the results seem to be promising, and yet there are potentials for the optimization and improvement of the proposed system, hence they have been pointed out.
期刊介绍:
JTST covers a variety of fields in thermal engineering including heat and mass transfer, thermodynamics, combustion, bio-heat transfer, micro- and macro-scale transport phenomena and practical thermal problems in industrial applications.