{"title":"锥形桩的荷载-位移特性:理论建模与分析","authors":"Yunong Li, Wei Li","doi":"10.12989/GAE.2021.26.1.001","DOIUrl":null,"url":null,"abstract":"This paper presents a simplified analytical approach for evaluating the load-displacement response of single tapered pile and pile groups under static axial compressive loads. The response of the tapered pile shaft is considered elastically in the initial stage, whereas the increase in stresses due to slippage along the pile-soil interface is obtained from a developed undrained cylindrical cavity expansion solution based on the K0-based anisotropic modified Cam-clay (K0-AMCC) model. An effective iterative computer program is developed to calculate the load-displacement behaviour of a single tapered pile. Regarding the response analysis of tapered pile groups, a finite-difference method is employed to calculate the interaction between tapered pile shaft, and the linear elastic model to simulate the interaction developed at the pile base. A reduction coefficient is introduced into the analysis of pile shaft interaction to clarify the reinforcing effect between tapered piles. Therefore, the settlement calculation methods of pile groups are proposed for different pile cap stiffness. The calculation methods of single tapered pile and pile groups are validated using two 3D Finite Element (FE) programs, and the comparison results show that reasonable predictions can be made using the method proposed in this paper. Parametric studies are conducted to investigate the effects of taper angle, soil anisotropy, pile spacing, and pile number on the load-displacement behaviour of single tapered pile and tapered pile groups.","PeriodicalId":12602,"journal":{"name":"Geomechanics and Engineering","volume":"26 1","pages":"1"},"PeriodicalIF":2.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Load-displacement behaviour of tapered piles: Theoretical modelling and analysis\",\"authors\":\"Yunong Li, Wei Li\",\"doi\":\"10.12989/GAE.2021.26.1.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a simplified analytical approach for evaluating the load-displacement response of single tapered pile and pile groups under static axial compressive loads. The response of the tapered pile shaft is considered elastically in the initial stage, whereas the increase in stresses due to slippage along the pile-soil interface is obtained from a developed undrained cylindrical cavity expansion solution based on the K0-based anisotropic modified Cam-clay (K0-AMCC) model. An effective iterative computer program is developed to calculate the load-displacement behaviour of a single tapered pile. Regarding the response analysis of tapered pile groups, a finite-difference method is employed to calculate the interaction between tapered pile shaft, and the linear elastic model to simulate the interaction developed at the pile base. A reduction coefficient is introduced into the analysis of pile shaft interaction to clarify the reinforcing effect between tapered piles. Therefore, the settlement calculation methods of pile groups are proposed for different pile cap stiffness. The calculation methods of single tapered pile and pile groups are validated using two 3D Finite Element (FE) programs, and the comparison results show that reasonable predictions can be made using the method proposed in this paper. Parametric studies are conducted to investigate the effects of taper angle, soil anisotropy, pile spacing, and pile number on the load-displacement behaviour of single tapered pile and tapered pile groups.\",\"PeriodicalId\":12602,\"journal\":{\"name\":\"Geomechanics and Engineering\",\"volume\":\"26 1\",\"pages\":\"1\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/GAE.2021.26.1.001\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/GAE.2021.26.1.001","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Load-displacement behaviour of tapered piles: Theoretical modelling and analysis
This paper presents a simplified analytical approach for evaluating the load-displacement response of single tapered pile and pile groups under static axial compressive loads. The response of the tapered pile shaft is considered elastically in the initial stage, whereas the increase in stresses due to slippage along the pile-soil interface is obtained from a developed undrained cylindrical cavity expansion solution based on the K0-based anisotropic modified Cam-clay (K0-AMCC) model. An effective iterative computer program is developed to calculate the load-displacement behaviour of a single tapered pile. Regarding the response analysis of tapered pile groups, a finite-difference method is employed to calculate the interaction between tapered pile shaft, and the linear elastic model to simulate the interaction developed at the pile base. A reduction coefficient is introduced into the analysis of pile shaft interaction to clarify the reinforcing effect between tapered piles. Therefore, the settlement calculation methods of pile groups are proposed for different pile cap stiffness. The calculation methods of single tapered pile and pile groups are validated using two 3D Finite Element (FE) programs, and the comparison results show that reasonable predictions can be made using the method proposed in this paper. Parametric studies are conducted to investigate the effects of taper angle, soil anisotropy, pile spacing, and pile number on the load-displacement behaviour of single tapered pile and tapered pile groups.
期刊介绍:
The Geomechanics and Engineering aims at opening an easy access to the valuable source of information and providing an excellent publication channel for the global community of researchers in the geomechanics and its applications.
Typical subjects covered by the journal include:
- Analytical, computational, and experimental multiscale and interaction mechanics-
Computational and Theoretical Geomechnics-
Foundations-
Tunneling-
Earth Structures-
Site Characterization-
Soil-Structure Interactions