静态和循环条件下受侧向荷载作用的砂土中单桩的三维建模

IF 2.5 3区 工程技术 Q2 ENGINEERING, CIVIL Geomechanics and Engineering Pub Date : 2021-01-01 DOI:10.12989/GAE.2021.26.2.175
A. Barari, X. Zeng, M. Rezania, L. Ibsen
{"title":"静态和循环条件下受侧向荷载作用的砂土中单桩的三维建模","authors":"A. Barari, X. Zeng, M. Rezania, L. Ibsen","doi":"10.12989/GAE.2021.26.2.175","DOIUrl":null,"url":null,"abstract":"Here, the results of a three-dimensional finite element study of the complex interaction of horizontal and moment loads (HM) on offshore monopiles as failure envelope, are reported. A new design criterion is described which is based on critical length, ultimate limit states, load characteristics and Eigen-frequency to ensure stable behavior of laterally loaded monopiles. Numerical analyses were performed to examine nonlinear interaction of a soil-pile system for 10,000 load cycles. The resulting framework can predict angular rotation due to cyclic loading. According to the loading level and duration of a load, elastic strains accumulate in the vicinity of a pile. Fairly intermediate two-way cyclic loading induced the largest rotations irrespective of the analysis performed (i.e., drained versus partially drained). Based on the regression coefficients of the non-dimensional frameworks used, accumulating rocking deformations of a pile at seabed level appear to be dependent on cyclic load ratio, drainage condition, and duration of loading. For safe design, sensitivity of the natural frequency of offshore wind turbine (OWT) at a monopile critical length as well as shorter lengths were also examined. The analytical model proposed here for determining the natural frequency of an OWT considers that soil-structure interaction (SSI) can be represented by monopile head springs characterized by lateral stiffness, KL, rotational stiffness, KR, cross-coupling stiffness, KLR, and parabolic soil stiffness variation with depth.","PeriodicalId":12602,"journal":{"name":"Geomechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Three-Dimensional Modeling of Monopiles in Sand Subjected to Lateral Loading under Static and Cyclic Conditions\",\"authors\":\"A. Barari, X. Zeng, M. Rezania, L. Ibsen\",\"doi\":\"10.12989/GAE.2021.26.2.175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, the results of a three-dimensional finite element study of the complex interaction of horizontal and moment loads (HM) on offshore monopiles as failure envelope, are reported. A new design criterion is described which is based on critical length, ultimate limit states, load characteristics and Eigen-frequency to ensure stable behavior of laterally loaded monopiles. Numerical analyses were performed to examine nonlinear interaction of a soil-pile system for 10,000 load cycles. The resulting framework can predict angular rotation due to cyclic loading. According to the loading level and duration of a load, elastic strains accumulate in the vicinity of a pile. Fairly intermediate two-way cyclic loading induced the largest rotations irrespective of the analysis performed (i.e., drained versus partially drained). Based on the regression coefficients of the non-dimensional frameworks used, accumulating rocking deformations of a pile at seabed level appear to be dependent on cyclic load ratio, drainage condition, and duration of loading. For safe design, sensitivity of the natural frequency of offshore wind turbine (OWT) at a monopile critical length as well as shorter lengths were also examined. The analytical model proposed here for determining the natural frequency of an OWT considers that soil-structure interaction (SSI) can be represented by monopile head springs characterized by lateral stiffness, KL, rotational stiffness, KR, cross-coupling stiffness, KLR, and parabolic soil stiffness variation with depth.\",\"PeriodicalId\":12602,\"journal\":{\"name\":\"Geomechanics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/GAE.2021.26.2.175\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/GAE.2021.26.2.175","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2

摘要

本文报道了海上单桩作为破坏包络的水平和弯矩载荷(HM)复杂相互作用的三维有限元研究结果。提出了一种基于临界长度、极限状态、荷载特性和本征频率的单桩稳定设计准则。对1万次荷载循环下桩土系统的非线性相互作用进行了数值分析。所得到的框架可以预测由于循环加载的角旋转。根据荷载水平和荷载持续时间的不同,弹性应变会在桩的附近累积。无论进行何种分析(即排水还是部分排水),相当中等的双向循环荷载都会引起最大的旋转。根据所采用的无量纲框架的回归系数,海底水平桩的累积摇摆变形似乎与循环荷载比、排水条件和荷载持续时间有关。为了安全设计,还研究了单桩临界长度和较短长度下海上风力机固有频率的敏感性。本文提出的用于确定OWT固有频率的解析模型认为,土-结构相互作用(SSI)可以用单桩头弹簧来表示,其特征是侧向刚度、KL、旋转刚度、KR、交叉耦合刚度、KLR和土壤刚度随深度的抛物线变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Three-Dimensional Modeling of Monopiles in Sand Subjected to Lateral Loading under Static and Cyclic Conditions
Here, the results of a three-dimensional finite element study of the complex interaction of horizontal and moment loads (HM) on offshore monopiles as failure envelope, are reported. A new design criterion is described which is based on critical length, ultimate limit states, load characteristics and Eigen-frequency to ensure stable behavior of laterally loaded monopiles. Numerical analyses were performed to examine nonlinear interaction of a soil-pile system for 10,000 load cycles. The resulting framework can predict angular rotation due to cyclic loading. According to the loading level and duration of a load, elastic strains accumulate in the vicinity of a pile. Fairly intermediate two-way cyclic loading induced the largest rotations irrespective of the analysis performed (i.e., drained versus partially drained). Based on the regression coefficients of the non-dimensional frameworks used, accumulating rocking deformations of a pile at seabed level appear to be dependent on cyclic load ratio, drainage condition, and duration of loading. For safe design, sensitivity of the natural frequency of offshore wind turbine (OWT) at a monopile critical length as well as shorter lengths were also examined. The analytical model proposed here for determining the natural frequency of an OWT considers that soil-structure interaction (SSI) can be represented by monopile head springs characterized by lateral stiffness, KL, rotational stiffness, KR, cross-coupling stiffness, KLR, and parabolic soil stiffness variation with depth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomechanics and Engineering
Geomechanics and Engineering ENGINEERING, CIVIL-ENGINEERING, GEOLOGICAL
CiteScore
5.20
自引率
25.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Geomechanics and Engineering aims at opening an easy access to the valuable source of information and providing an excellent publication channel for the global community of researchers in the geomechanics and its applications. Typical subjects covered by the journal include: - Analytical, computational, and experimental multiscale and interaction mechanics- Computational and Theoretical Geomechnics- Foundations- Tunneling- Earth Structures- Site Characterization- Soil-Structure Interactions
期刊最新文献
An analytical approach to estimate the mechanical state of roof strata in underground longwall mining Investigating of free vibration behavior of bidirectional FG beams resting on variable elastic foundation Evaluation of grout penetration in single rock fracture using electrical resistivity Study on lateral behavior of digging well foundation with consideration of soil-foundation interaction A novel preloading method for foundation underpinning for the remodeling of an existing building
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1