Jianning Liu, H. Manchao, Hou Shilin, Zhen-chuang Zhu, Yanjun Wang, Jun Yang
{"title":"一种新的无柱开采方法下矸石堆放过程中碎石侧支架受力变化","authors":"Jianning Liu, H. Manchao, Hou Shilin, Zhen-chuang Zhu, Yanjun Wang, Jun Yang","doi":"10.12989/GAE.2021.27.1.031","DOIUrl":null,"url":null,"abstract":"The force change characteristics of gravel side support structures during gangue heaping can provide useful information about roadway stability in a new non-pillar-mining approach—noncoal pillar mining with automatically formed gob-side entry (NMAFG). Considering the dynamic shock and static stacking phenomena during gangue heaping, the coefficient of restitution and Janssen model are introduced into the theoretical analysis. Analytical results show that the impact force decreased with increasing gangue heaping height under dynamic shock, while under static stacking, the gangue extrusion force first increased sharply, then increased slowly and stabilized, and the final force was unrelated to the gangue heaping height. Field monitoring was conducted to verify the rationality of the pattern obtained from theoretical analysis. The gangue support structure lateral stress from field monitoring can be divided into two periods. In Period I, the peak value at the lower monitoring point was greater than that at any other point. The lowest sensor was subjected to the greatest impact, at 59.09 kN. In Period II, the stress value first rapidly increased, then slowly increased and stabilized. The final force was unrelated to the gangue height. The sensors at #2 (highest position), #4 (middle position), and #6 (lowest position) measured 31.91 kN, 44.82 kN and 38.19 kN, respectively. The analysis confirmed the variation characteristics of the impact force and extrusion force.","PeriodicalId":12602,"journal":{"name":"Geomechanics and Engineering","volume":"27 1","pages":"31"},"PeriodicalIF":2.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Force change of the gravel side support during gangue heaping under a new non-pillar-mining approach\",\"authors\":\"Jianning Liu, H. Manchao, Hou Shilin, Zhen-chuang Zhu, Yanjun Wang, Jun Yang\",\"doi\":\"10.12989/GAE.2021.27.1.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The force change characteristics of gravel side support structures during gangue heaping can provide useful information about roadway stability in a new non-pillar-mining approach—noncoal pillar mining with automatically formed gob-side entry (NMAFG). Considering the dynamic shock and static stacking phenomena during gangue heaping, the coefficient of restitution and Janssen model are introduced into the theoretical analysis. Analytical results show that the impact force decreased with increasing gangue heaping height under dynamic shock, while under static stacking, the gangue extrusion force first increased sharply, then increased slowly and stabilized, and the final force was unrelated to the gangue heaping height. Field monitoring was conducted to verify the rationality of the pattern obtained from theoretical analysis. The gangue support structure lateral stress from field monitoring can be divided into two periods. In Period I, the peak value at the lower monitoring point was greater than that at any other point. The lowest sensor was subjected to the greatest impact, at 59.09 kN. In Period II, the stress value first rapidly increased, then slowly increased and stabilized. The final force was unrelated to the gangue height. The sensors at #2 (highest position), #4 (middle position), and #6 (lowest position) measured 31.91 kN, 44.82 kN and 38.19 kN, respectively. The analysis confirmed the variation characteristics of the impact force and extrusion force.\",\"PeriodicalId\":12602,\"journal\":{\"name\":\"Geomechanics and Engineering\",\"volume\":\"27 1\",\"pages\":\"31\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/GAE.2021.27.1.031\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/GAE.2021.27.1.031","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Force change of the gravel side support during gangue heaping under a new non-pillar-mining approach
The force change characteristics of gravel side support structures during gangue heaping can provide useful information about roadway stability in a new non-pillar-mining approach—noncoal pillar mining with automatically formed gob-side entry (NMAFG). Considering the dynamic shock and static stacking phenomena during gangue heaping, the coefficient of restitution and Janssen model are introduced into the theoretical analysis. Analytical results show that the impact force decreased with increasing gangue heaping height under dynamic shock, while under static stacking, the gangue extrusion force first increased sharply, then increased slowly and stabilized, and the final force was unrelated to the gangue heaping height. Field monitoring was conducted to verify the rationality of the pattern obtained from theoretical analysis. The gangue support structure lateral stress from field monitoring can be divided into two periods. In Period I, the peak value at the lower monitoring point was greater than that at any other point. The lowest sensor was subjected to the greatest impact, at 59.09 kN. In Period II, the stress value first rapidly increased, then slowly increased and stabilized. The final force was unrelated to the gangue height. The sensors at #2 (highest position), #4 (middle position), and #6 (lowest position) measured 31.91 kN, 44.82 kN and 38.19 kN, respectively. The analysis confirmed the variation characteristics of the impact force and extrusion force.
期刊介绍:
The Geomechanics and Engineering aims at opening an easy access to the valuable source of information and providing an excellent publication channel for the global community of researchers in the geomechanics and its applications.
Typical subjects covered by the journal include:
- Analytical, computational, and experimental multiscale and interaction mechanics-
Computational and Theoretical Geomechnics-
Foundations-
Tunneling-
Earth Structures-
Site Characterization-
Soil-Structure Interactions