基于累积预测误差的模型选择及模型选择策略

M. Piłatowska
{"title":"基于累积预测误差的模型选择及模型选择策略","authors":"M. Piłatowska","doi":"10.12775/DEM.2010.009","DOIUrl":null,"url":null,"abstract":"The purpose of the paper is to present and apply the accumulative one-step-ahead prediction error (APE) not only as a method (strategy) of model selection, but also as a tool of model selection strategy (meta-selection). The APE method is compared with the information approach to model selection (AIC and BIC information criteria), supported by empirical examples. Obtained results indicated that the APE method may be of considerable practical importance.","PeriodicalId":31914,"journal":{"name":"Dynamic Econometric Models","volume":"10 1","pages":"107-119"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Choosing a Model and Strategy of Model Selection by Accumulated Prediction Error\",\"authors\":\"M. Piłatowska\",\"doi\":\"10.12775/DEM.2010.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of the paper is to present and apply the accumulative one-step-ahead prediction error (APE) not only as a method (strategy) of model selection, but also as a tool of model selection strategy (meta-selection). The APE method is compared with the information approach to model selection (AIC and BIC information criteria), supported by empirical examples. Obtained results indicated that the APE method may be of considerable practical importance.\",\"PeriodicalId\":31914,\"journal\":{\"name\":\"Dynamic Econometric Models\",\"volume\":\"10 1\",\"pages\":\"107-119\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamic Econometric Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12775/DEM.2010.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamic Econometric Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/DEM.2010.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是提出和应用累积一步超前预测误差(APE)不仅作为模型选择的方法(策略),而且作为模型选择策略(元选择)的工具。通过实例分析,将APE方法与信息方法(AIC和BIC信息标准)进行了模型选择的比较。所得结果表明,该方法具有一定的实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Choosing a Model and Strategy of Model Selection by Accumulated Prediction Error
The purpose of the paper is to present and apply the accumulative one-step-ahead prediction error (APE) not only as a method (strategy) of model selection, but also as a tool of model selection strategy (meta-selection). The APE method is compared with the information approach to model selection (AIC and BIC information criteria), supported by empirical examples. Obtained results indicated that the APE method may be of considerable practical importance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2 weeks
期刊最新文献
Energy Consumption and Economic Growth in Ethiopia: Evidence from ARDL Bound Test Approach Demonetisation as an Economic Policy Tool: Macroeconomic Implications of a Monetary Market Shock. The Example of the Indian Monetary Reform Impact of Export and Import on Economic Growth: Time Series Evidence from India Revisiting the Import Demand Function: A Comparative Analysis Impact of the Sector and of Internal Factors on Profitability of the Companies Listed on the Warsaw Stock Exchange
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1