基于CAViaR模型、包络法和组合预测的商品风险建模

Ewa Ratuszny
{"title":"基于CAViaR模型、包络法和组合预测的商品风险建模","authors":"Ewa Ratuszny","doi":"10.12775/DEM.2015.006","DOIUrl":null,"url":null,"abstract":"The aim of the research is to compare VaR methods/models for commodities. For risk measurement Conditional Autoregressive Value at Risk models (CAViaR), implied quantile model and encompassing method are used. The aim is to check whether simultaneous use of information both from historical time series and regarding markets' expectation can improve accuracy of forecasts. For this purpose four methods of combining forecasts are used: a simple average combining, an unrestricted linear combination, a weighted averaged combining and a weighted averaged combining using exponential weighting. In the case of the commodities neither the encompassing method nor the combining forecast method improve VaR forecasts. The method of choosing the most adequate model leads to simple CAViaR-SAV model as the source of most optimal measure of risk forecasts. The Kupiec test, the Christoffersen and the Dynamic Quantile test indicate the model as an adequate to forecast VaR for gold and oil for short positions at the 0.01 and the 0.05 significance level, and for a long position at the 0.05 significance level.","PeriodicalId":31914,"journal":{"name":"Dynamic Econometric Models","volume":"15 1","pages":"129-156"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Risk Modeling of Commodities using CAViaR Models, the Encompassing Method and the Combined Forecasts\",\"authors\":\"Ewa Ratuszny\",\"doi\":\"10.12775/DEM.2015.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the research is to compare VaR methods/models for commodities. For risk measurement Conditional Autoregressive Value at Risk models (CAViaR), implied quantile model and encompassing method are used. The aim is to check whether simultaneous use of information both from historical time series and regarding markets' expectation can improve accuracy of forecasts. For this purpose four methods of combining forecasts are used: a simple average combining, an unrestricted linear combination, a weighted averaged combining and a weighted averaged combining using exponential weighting. In the case of the commodities neither the encompassing method nor the combining forecast method improve VaR forecasts. The method of choosing the most adequate model leads to simple CAViaR-SAV model as the source of most optimal measure of risk forecasts. The Kupiec test, the Christoffersen and the Dynamic Quantile test indicate the model as an adequate to forecast VaR for gold and oil for short positions at the 0.01 and the 0.05 significance level, and for a long position at the 0.05 significance level.\",\"PeriodicalId\":31914,\"journal\":{\"name\":\"Dynamic Econometric Models\",\"volume\":\"15 1\",\"pages\":\"129-156\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamic Econometric Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12775/DEM.2015.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamic Econometric Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/DEM.2015.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本研究的目的是比较商品的VaR方法/模型。对于风险度量,采用了条件自回归风险值模型(CAViaR)和隐含分位数模型。目的是检查同时使用历史时间序列和市场预期的信息是否可以提高预测的准确性。为此,使用了四种组合预测的方法:简单平均组合、无限制线性组合、加权平均组合和使用指数加权的加权平均组合。在商品的情况下,包括法和组合预测法都没有改善VaR的预测。选择最合适模型的方法使简单的CAViaR-SAV模型成为最优风险预测度量的来源。Kupiec检验、Christoffersen检验和动态分位数检验表明,该模型能够在0.01和0.05显著水平上预测黄金和石油的空头VaR,在0.05显著水平上预测多头VaR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Risk Modeling of Commodities using CAViaR Models, the Encompassing Method and the Combined Forecasts
The aim of the research is to compare VaR methods/models for commodities. For risk measurement Conditional Autoregressive Value at Risk models (CAViaR), implied quantile model and encompassing method are used. The aim is to check whether simultaneous use of information both from historical time series and regarding markets' expectation can improve accuracy of forecasts. For this purpose four methods of combining forecasts are used: a simple average combining, an unrestricted linear combination, a weighted averaged combining and a weighted averaged combining using exponential weighting. In the case of the commodities neither the encompassing method nor the combining forecast method improve VaR forecasts. The method of choosing the most adequate model leads to simple CAViaR-SAV model as the source of most optimal measure of risk forecasts. The Kupiec test, the Christoffersen and the Dynamic Quantile test indicate the model as an adequate to forecast VaR for gold and oil for short positions at the 0.01 and the 0.05 significance level, and for a long position at the 0.05 significance level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2 weeks
期刊最新文献
Energy Consumption and Economic Growth in Ethiopia: Evidence from ARDL Bound Test Approach Demonetisation as an Economic Policy Tool: Macroeconomic Implications of a Monetary Market Shock. The Example of the Indian Monetary Reform Impact of Export and Import on Economic Growth: Time Series Evidence from India Revisiting the Import Demand Function: A Comparative Analysis Impact of the Sector and of Internal Factors on Profitability of the Companies Listed on the Warsaw Stock Exchange
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1