L. Alonso, D. Garcia-Gonzalez, C. Navarro, S. García-Castillo
{"title":"厚编织板高速碰撞的无量纲理论方法","authors":"L. Alonso, D. Garcia-Gonzalez, C. Navarro, S. García-Castillo","doi":"10.12989/SCS.2021.38.6.717","DOIUrl":null,"url":null,"abstract":"A theoretical energy-based model to capture the mechanical response of thick woven composite laminates, which are used in such applications as maritime or aerospace, to high-velocity impact was developed. The dependences of the impact phenomenon on material and geometrical parameters were analysed making use of the Vaschy-Buckingham Theorem to provide a non-dimensional framework. The model was divided in three different stages splitting the physical interpretation of the perforation process: a first where different dissipative mechanisms such as compression or shear plugging were considered, a second where a transference of linear momentum was assumed and a third where only friction took place. The model was validated against experimental data along with a 3D finite element model. The numerical simulations were used to validate some of the new hypotheses assumed in the theoretical model to provide a more accurate explanation of the phenomena taking place during a high-velocity impact.","PeriodicalId":51177,"journal":{"name":"Steel and Composite Structures","volume":"38 1","pages":"717-737"},"PeriodicalIF":4.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A non-dimensional theoretical approach to model high-velocity impact on thick woven plates\",\"authors\":\"L. Alonso, D. Garcia-Gonzalez, C. Navarro, S. García-Castillo\",\"doi\":\"10.12989/SCS.2021.38.6.717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A theoretical energy-based model to capture the mechanical response of thick woven composite laminates, which are used in such applications as maritime or aerospace, to high-velocity impact was developed. The dependences of the impact phenomenon on material and geometrical parameters were analysed making use of the Vaschy-Buckingham Theorem to provide a non-dimensional framework. The model was divided in three different stages splitting the physical interpretation of the perforation process: a first where different dissipative mechanisms such as compression or shear plugging were considered, a second where a transference of linear momentum was assumed and a third where only friction took place. The model was validated against experimental data along with a 3D finite element model. The numerical simulations were used to validate some of the new hypotheses assumed in the theoretical model to provide a more accurate explanation of the phenomena taking place during a high-velocity impact.\",\"PeriodicalId\":51177,\"journal\":{\"name\":\"Steel and Composite Structures\",\"volume\":\"38 1\",\"pages\":\"717-737\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Steel and Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SCS.2021.38.6.717\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steel and Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SCS.2021.38.6.717","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
A non-dimensional theoretical approach to model high-velocity impact on thick woven plates
A theoretical energy-based model to capture the mechanical response of thick woven composite laminates, which are used in such applications as maritime or aerospace, to high-velocity impact was developed. The dependences of the impact phenomenon on material and geometrical parameters were analysed making use of the Vaschy-Buckingham Theorem to provide a non-dimensional framework. The model was divided in three different stages splitting the physical interpretation of the perforation process: a first where different dissipative mechanisms such as compression or shear plugging were considered, a second where a transference of linear momentum was assumed and a third where only friction took place. The model was validated against experimental data along with a 3D finite element model. The numerical simulations were used to validate some of the new hypotheses assumed in the theoretical model to provide a more accurate explanation of the phenomena taking place during a high-velocity impact.
期刊介绍:
Steel & Composite Structures, An International Journal, provides and excellent publication channel which reports the up-to-date research developments in the steel structures and steel-concrete composite structures, and FRP plated structures from the international steel community. The research results reported in this journal address all the aspects of theoretical and experimental research, including Buckling/Stability, Fatigue/Fracture, Fire Performance, Connections, Frames/Bridges, Plates/Shells, Composite Structural Components, Hybrid Structures, Fabrication/Maintenance, Design Codes, Dynamics/Vibrations, Nonferrous Metal Structures, Non-metalic plates, Analytical Methods.
The Journal specially wishes to bridge the gap between the theoretical developments and practical applications for the benefits of both academic researchers and practicing engineers. In this light, contributions from the practicing engineers are especially welcome.