Zhong Zhang, D. Zhou, Jiandong Zhang, H. Fang, Huixuan Han
{"title":"稳态热源和机械载荷作用下层状梁的瞬态分析","authors":"Zhong Zhang, D. Zhou, Jiandong Zhang, H. Fang, Huixuan Han","doi":"10.12989/SCS.2021.40.1.087","DOIUrl":null,"url":null,"abstract":"In this study, an analytical model is developed for the analysis of transient temperature, displacements, and stresses in simply supported layered beams. The beam is suddenly heated from the top and bottom surfaces by external steady heat sources and is subjected to a mechanical load. The temperature in each layer is variable along the thickness and follows the one-dimensional (1-D) transient heat transfer equation. The Laplace transform approach is used to obtain the transient temperature field in the beam. The thermoelastic constants of the beam are temperature-dependent. Dividing every layer into a series of thin slices, the temperature and the thermoelastic constants for each slice can be considered uniform. The two-dimensional (2-D) thermoelasticity theory is adopted to derive the governing equations of displacements and stresses in each slice. The transfer matrix method is applied to obtain the displacement and stress solutions for the beam. As an example, the distributions of transient temperature, displacements, and stresses in a three-layer beam are studied. The effects of the temperature dependent thermoelastic constants on the mechanical behavior of the beam are discussed in detail.","PeriodicalId":51177,"journal":{"name":"Steel and Composite Structures","volume":"72 1","pages":"87"},"PeriodicalIF":4.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Transient analysis of layered beams subjected to steady heat supply and mechanical load\",\"authors\":\"Zhong Zhang, D. Zhou, Jiandong Zhang, H. Fang, Huixuan Han\",\"doi\":\"10.12989/SCS.2021.40.1.087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, an analytical model is developed for the analysis of transient temperature, displacements, and stresses in simply supported layered beams. The beam is suddenly heated from the top and bottom surfaces by external steady heat sources and is subjected to a mechanical load. The temperature in each layer is variable along the thickness and follows the one-dimensional (1-D) transient heat transfer equation. The Laplace transform approach is used to obtain the transient temperature field in the beam. The thermoelastic constants of the beam are temperature-dependent. Dividing every layer into a series of thin slices, the temperature and the thermoelastic constants for each slice can be considered uniform. The two-dimensional (2-D) thermoelasticity theory is adopted to derive the governing equations of displacements and stresses in each slice. The transfer matrix method is applied to obtain the displacement and stress solutions for the beam. As an example, the distributions of transient temperature, displacements, and stresses in a three-layer beam are studied. The effects of the temperature dependent thermoelastic constants on the mechanical behavior of the beam are discussed in detail.\",\"PeriodicalId\":51177,\"journal\":{\"name\":\"Steel and Composite Structures\",\"volume\":\"72 1\",\"pages\":\"87\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Steel and Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SCS.2021.40.1.087\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steel and Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SCS.2021.40.1.087","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Transient analysis of layered beams subjected to steady heat supply and mechanical load
In this study, an analytical model is developed for the analysis of transient temperature, displacements, and stresses in simply supported layered beams. The beam is suddenly heated from the top and bottom surfaces by external steady heat sources and is subjected to a mechanical load. The temperature in each layer is variable along the thickness and follows the one-dimensional (1-D) transient heat transfer equation. The Laplace transform approach is used to obtain the transient temperature field in the beam. The thermoelastic constants of the beam are temperature-dependent. Dividing every layer into a series of thin slices, the temperature and the thermoelastic constants for each slice can be considered uniform. The two-dimensional (2-D) thermoelasticity theory is adopted to derive the governing equations of displacements and stresses in each slice. The transfer matrix method is applied to obtain the displacement and stress solutions for the beam. As an example, the distributions of transient temperature, displacements, and stresses in a three-layer beam are studied. The effects of the temperature dependent thermoelastic constants on the mechanical behavior of the beam are discussed in detail.
期刊介绍:
Steel & Composite Structures, An International Journal, provides and excellent publication channel which reports the up-to-date research developments in the steel structures and steel-concrete composite structures, and FRP plated structures from the international steel community. The research results reported in this journal address all the aspects of theoretical and experimental research, including Buckling/Stability, Fatigue/Fracture, Fire Performance, Connections, Frames/Bridges, Plates/Shells, Composite Structural Components, Hybrid Structures, Fabrication/Maintenance, Design Codes, Dynamics/Vibrations, Nonferrous Metal Structures, Non-metalic plates, Analytical Methods.
The Journal specially wishes to bridge the gap between the theoretical developments and practical applications for the benefits of both academic researchers and practicing engineers. In this light, contributions from the practicing engineers are especially welcome.