{"title":"带消能槽的高强钢框架在重复近场地震作用下的能量因子","authors":"K. Ke, M. Yam, Xu-hong Zhou, Fuming Wang, Fei Xu","doi":"10.12989/SCS.2021.40.3.369","DOIUrl":null,"url":null,"abstract":"This investigation contributes to quantification of the inelastic seismic demands for high strength steel moment resisting frames equipped with energy dissipation bays (HSSF-EDBs) subjected to seismic sequences composed of repeated near-field ground motions. The emphasis is placed on the energy factor demand. A statistical examination of a database with more than eighty million energy factor demands of single-degree-of-freedom (SDOF) oscillators representing HSSF-EDBs responding in different yielding stages is conducted. The research findings show that in the damage-control stage, the energy factor which quantifies the peak seismic demand of a HSSF-EDB structure is insensitive to the repeated near-field earthquake motions. In contrast, a remarkable elevation of the energy factor is observed when oscillators characterising HSSF-EDBs progress into the ultimate stage. In addition, an increasing post-yielding stiffness ratio of the nonlinear force-displacement response in the damage-control stage may produce a detrimental effect on HSSF-EDBs progressing into the ultimate stage under repeated near-field earthquakes due to the corresponding evident increase of seismic demands. A nonlinear regression model quantifying the mean energy factor demand of the system under repeated near-field earthquake motions is proposed to facilitate performance-based seismic design of HSSF-EDBs.","PeriodicalId":51177,"journal":{"name":"Steel and Composite Structures","volume":"40 1","pages":"369"},"PeriodicalIF":4.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Energy factor of high-strength-steel frames with energy dissipation bays under repeated near-field earthquakes\",\"authors\":\"K. Ke, M. Yam, Xu-hong Zhou, Fuming Wang, Fei Xu\",\"doi\":\"10.12989/SCS.2021.40.3.369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This investigation contributes to quantification of the inelastic seismic demands for high strength steel moment resisting frames equipped with energy dissipation bays (HSSF-EDBs) subjected to seismic sequences composed of repeated near-field ground motions. The emphasis is placed on the energy factor demand. A statistical examination of a database with more than eighty million energy factor demands of single-degree-of-freedom (SDOF) oscillators representing HSSF-EDBs responding in different yielding stages is conducted. The research findings show that in the damage-control stage, the energy factor which quantifies the peak seismic demand of a HSSF-EDB structure is insensitive to the repeated near-field earthquake motions. In contrast, a remarkable elevation of the energy factor is observed when oscillators characterising HSSF-EDBs progress into the ultimate stage. In addition, an increasing post-yielding stiffness ratio of the nonlinear force-displacement response in the damage-control stage may produce a detrimental effect on HSSF-EDBs progressing into the ultimate stage under repeated near-field earthquakes due to the corresponding evident increase of seismic demands. A nonlinear regression model quantifying the mean energy factor demand of the system under repeated near-field earthquake motions is proposed to facilitate performance-based seismic design of HSSF-EDBs.\",\"PeriodicalId\":51177,\"journal\":{\"name\":\"Steel and Composite Structures\",\"volume\":\"40 1\",\"pages\":\"369\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Steel and Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SCS.2021.40.3.369\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steel and Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SCS.2021.40.3.369","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Energy factor of high-strength-steel frames with energy dissipation bays under repeated near-field earthquakes
This investigation contributes to quantification of the inelastic seismic demands for high strength steel moment resisting frames equipped with energy dissipation bays (HSSF-EDBs) subjected to seismic sequences composed of repeated near-field ground motions. The emphasis is placed on the energy factor demand. A statistical examination of a database with more than eighty million energy factor demands of single-degree-of-freedom (SDOF) oscillators representing HSSF-EDBs responding in different yielding stages is conducted. The research findings show that in the damage-control stage, the energy factor which quantifies the peak seismic demand of a HSSF-EDB structure is insensitive to the repeated near-field earthquake motions. In contrast, a remarkable elevation of the energy factor is observed when oscillators characterising HSSF-EDBs progress into the ultimate stage. In addition, an increasing post-yielding stiffness ratio of the nonlinear force-displacement response in the damage-control stage may produce a detrimental effect on HSSF-EDBs progressing into the ultimate stage under repeated near-field earthquakes due to the corresponding evident increase of seismic demands. A nonlinear regression model quantifying the mean energy factor demand of the system under repeated near-field earthquake motions is proposed to facilitate performance-based seismic design of HSSF-EDBs.
期刊介绍:
Steel & Composite Structures, An International Journal, provides and excellent publication channel which reports the up-to-date research developments in the steel structures and steel-concrete composite structures, and FRP plated structures from the international steel community. The research results reported in this journal address all the aspects of theoretical and experimental research, including Buckling/Stability, Fatigue/Fracture, Fire Performance, Connections, Frames/Bridges, Plates/Shells, Composite Structural Components, Hybrid Structures, Fabrication/Maintenance, Design Codes, Dynamics/Vibrations, Nonferrous Metal Structures, Non-metalic plates, Analytical Methods.
The Journal specially wishes to bridge the gap between the theoretical developments and practical applications for the benefits of both academic researchers and practicing engineers. In this light, contributions from the practicing engineers are especially welcome.