采用新型盲栓剪力连接件的钢-混凝土组合桥梁的结构性能

IF 4 3区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Steel and Composite Structures Pub Date : 2021-01-01 DOI:10.12989/SCS.2021.40.4.581
S.M. Hosseini, F. Mashiri, O. Mirza, B. Hart
{"title":"采用新型盲栓剪力连接件的钢-混凝土组合桥梁的结构性能","authors":"S.M. Hosseini, F. Mashiri, O. Mirza, B. Hart","doi":"10.12989/SCS.2021.40.4.581","DOIUrl":null,"url":null,"abstract":"The purpose of this research is to identify more efficient and reliable connection methods to design a composite steel/concrete structural system with a focus on sustainability. While using innovative blind bolt shear connectors into substitute for the welded stud brings several benefits regarding constructability and sustainability, research contributions on the high strength blind bolt shear connector are very limited. Therefore, in this study, several push-out test specimens were carried out, in accordance with the Eurocode 4 standards, for both the traditional welded stud and the blind bolt shear connector, to determine the ultimate capacity, ductility, stiffness, stress-strain and load versus slip performance. In addition, finite element analysis has been done on the two types of shear connectors to determine the factors influencing static strength of shear connectors. The feasibility and accuracy of the 3-D finite element model developed in this work was validated by comparing with experimental results obtained from push-out tests. Experimental and finite element modelling results revealed that the blind bolt shear connectors would be an appropriate alternative to the traditional welded stud for sustainable purposes under static loading conditions.","PeriodicalId":51177,"journal":{"name":"Steel and Composite Structures","volume":"40 1","pages":"581"},"PeriodicalIF":4.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural performance of steel-concrete composite bridges utilising innovative blind bolt shear connectors\",\"authors\":\"S.M. Hosseini, F. Mashiri, O. Mirza, B. Hart\",\"doi\":\"10.12989/SCS.2021.40.4.581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this research is to identify more efficient and reliable connection methods to design a composite steel/concrete structural system with a focus on sustainability. While using innovative blind bolt shear connectors into substitute for the welded stud brings several benefits regarding constructability and sustainability, research contributions on the high strength blind bolt shear connector are very limited. Therefore, in this study, several push-out test specimens were carried out, in accordance with the Eurocode 4 standards, for both the traditional welded stud and the blind bolt shear connector, to determine the ultimate capacity, ductility, stiffness, stress-strain and load versus slip performance. In addition, finite element analysis has been done on the two types of shear connectors to determine the factors influencing static strength of shear connectors. The feasibility and accuracy of the 3-D finite element model developed in this work was validated by comparing with experimental results obtained from push-out tests. Experimental and finite element modelling results revealed that the blind bolt shear connectors would be an appropriate alternative to the traditional welded stud for sustainable purposes under static loading conditions.\",\"PeriodicalId\":51177,\"journal\":{\"name\":\"Steel and Composite Structures\",\"volume\":\"40 1\",\"pages\":\"581\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Steel and Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SCS.2021.40.4.581\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steel and Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SCS.2021.40.4.581","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是确定更有效和可靠的连接方法来设计钢/混凝土组合结构体系,重点是可持续性。虽然使用创新的盲栓剪力连接件来替代焊接螺柱在可施工性和可持续性方面带来了一些好处,但对高强度盲栓剪力连接件的研究成果非常有限。因此,在本研究中,根据欧洲规范4的标准,对传统焊接螺柱和盲栓剪切连接器进行了几个推出试验,以确定其极限承载力、延性、刚度、应力-应变和荷载-滑移性能。另外,对两种剪力连接件进行了有限元分析,确定了影响剪力连接件静强度的因素。通过与推出试验结果的对比,验证了所建立的三维有限元模型的可行性和准确性。实验和有限元模拟结果表明,在静荷载条件下,盲栓剪切连接将是传统焊接螺柱的合适替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural performance of steel-concrete composite bridges utilising innovative blind bolt shear connectors
The purpose of this research is to identify more efficient and reliable connection methods to design a composite steel/concrete structural system with a focus on sustainability. While using innovative blind bolt shear connectors into substitute for the welded stud brings several benefits regarding constructability and sustainability, research contributions on the high strength blind bolt shear connector are very limited. Therefore, in this study, several push-out test specimens were carried out, in accordance with the Eurocode 4 standards, for both the traditional welded stud and the blind bolt shear connector, to determine the ultimate capacity, ductility, stiffness, stress-strain and load versus slip performance. In addition, finite element analysis has been done on the two types of shear connectors to determine the factors influencing static strength of shear connectors. The feasibility and accuracy of the 3-D finite element model developed in this work was validated by comparing with experimental results obtained from push-out tests. Experimental and finite element modelling results revealed that the blind bolt shear connectors would be an appropriate alternative to the traditional welded stud for sustainable purposes under static loading conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Steel and Composite Structures
Steel and Composite Structures 工程技术-材料科学:复合
CiteScore
8.50
自引率
19.60%
发文量
0
审稿时长
7.5 months
期刊介绍: Steel & Composite Structures, An International Journal, provides and excellent publication channel which reports the up-to-date research developments in the steel structures and steel-concrete composite structures, and FRP plated structures from the international steel community. The research results reported in this journal address all the aspects of theoretical and experimental research, including Buckling/Stability, Fatigue/Fracture, Fire Performance, Connections, Frames/Bridges, Plates/Shells, Composite Structural Components, Hybrid Structures, Fabrication/Maintenance, Design Codes, Dynamics/Vibrations, Nonferrous Metal Structures, Non-metalic plates, Analytical Methods. The Journal specially wishes to bridge the gap between the theoretical developments and practical applications for the benefits of both academic researchers and practicing engineers. In this light, contributions from the practicing engineers are especially welcome.
期刊最新文献
Integrated data-driven cross-disciplinary framework to prevent chemical water pollution. Study on the mechanism of the vortex-induced vibration ofa bluff double-side box section New composite flooring system for the circular economy Axial behavior of the steel reinforced lightweight aggregate concrete (SRLAC) short columns Dual-phase-lag model on thermo-microstretch elastic solid Under the effect of initial stress and temperature-dependent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1