“黄金观点”:评分社会中的数据驱动治理

IF 3.6 Q1 COMMUNICATION Internet Policy Review Pub Date : 2019-06-30 DOI:10.14763/2019.2.1413
L. Dencik, J. Redden, A. Hintz, Harry Warne
{"title":"“黄金观点”:评分社会中的数据驱动治理","authors":"L. Dencik, J. Redden, A. Hintz, Harry Warne","doi":"10.14763/2019.2.1413","DOIUrl":null,"url":null,"abstract":"Drawing on the first comprehensive investigation into the uses of data analytics in UK public services, this article outlines developments and practices surrounding the upsurge in data-driven forms of what we term ‘citizen scoring’. This refers to the use of data analytics in government for the purposes of categorisation, assessment and prediction at both individual and population level. Combining Freedom of Information requests and semi-structured interviews with public sector workers and civil society organisations, we detail the practices surrounding these developments and the nature of concerns expressed by different stakeholder groups as a way to elicit the heterogeneity, tensions and negotiations that shape the contemporary landscape of data-driven governance. Described by practitioners as a way to achieve a ‘golden view’ of populations, we argue that data systems need to be situated in this context in order to understand the wider politics of such a ‘view’ and the implications this has for state-citizen relations in the scoring society.","PeriodicalId":45799,"journal":{"name":"Internet Policy Review","volume":"8 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"The 'golden view': data-driven governance in the scoring society\",\"authors\":\"L. Dencik, J. Redden, A. Hintz, Harry Warne\",\"doi\":\"10.14763/2019.2.1413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drawing on the first comprehensive investigation into the uses of data analytics in UK public services, this article outlines developments and practices surrounding the upsurge in data-driven forms of what we term ‘citizen scoring’. This refers to the use of data analytics in government for the purposes of categorisation, assessment and prediction at both individual and population level. Combining Freedom of Information requests and semi-structured interviews with public sector workers and civil society organisations, we detail the practices surrounding these developments and the nature of concerns expressed by different stakeholder groups as a way to elicit the heterogeneity, tensions and negotiations that shape the contemporary landscape of data-driven governance. Described by practitioners as a way to achieve a ‘golden view’ of populations, we argue that data systems need to be situated in this context in order to understand the wider politics of such a ‘view’ and the implications this has for state-citizen relations in the scoring society.\",\"PeriodicalId\":45799,\"journal\":{\"name\":\"Internet Policy Review\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2019-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Policy Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14763/2019.2.1413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMMUNICATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Policy Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14763/2019.2.1413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMMUNICATION","Score":null,"Total":0}
引用次数: 36

摘要

根据对英国公共服务中数据分析使用的第一次全面调查,本文概述了围绕我们称之为“公民评分”的数据驱动形式激增的发展和实践。这是指在政府中使用数据分析,以便在个人和人口水平上进行分类、评估和预测。结合信息自由要求和对公共部门工作人员和民间社会组织的半结构化访谈,我们详细介绍了围绕这些发展的实践,以及不同利益相关者群体所表达的关切的性质,以此来引出塑造当代数据驱动治理格局的异质性、紧张关系和谈判。从业人员将其描述为实现人口“黄金观”的一种方式,我们认为数据系统需要置于这种背景下,以便理解这种“观”的更广泛政治以及这对计分社会中国家-公民关系的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The 'golden view': data-driven governance in the scoring society
Drawing on the first comprehensive investigation into the uses of data analytics in UK public services, this article outlines developments and practices surrounding the upsurge in data-driven forms of what we term ‘citizen scoring’. This refers to the use of data analytics in government for the purposes of categorisation, assessment and prediction at both individual and population level. Combining Freedom of Information requests and semi-structured interviews with public sector workers and civil society organisations, we detail the practices surrounding these developments and the nature of concerns expressed by different stakeholder groups as a way to elicit the heterogeneity, tensions and negotiations that shape the contemporary landscape of data-driven governance. Described by practitioners as a way to achieve a ‘golden view’ of populations, we argue that data systems need to be situated in this context in order to understand the wider politics of such a ‘view’ and the implications this has for state-citizen relations in the scoring society.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
5.60%
发文量
30
审稿时长
10 weeks
期刊最新文献
Government responses to online disinformation unpacked Navigating the AI frontier: European parliamentary insights on bias and regulation, preceding the AI Act Regulatory capacity capture: the United Kingdom’s online safety regime A complicated picture: Media diversity in the case of Google’s video search during the pandemic Dis/Trust and data-driven technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1