大米中镉超标的缓解战略

IF 12 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Comprehensive Reviews in Food Science and Food Safety Pub Date : 2023-07-17 DOI:10.1111/1541-4337.13210
Jun Song, Qiuchi Song, Dong Wang, Yonghong Liu
{"title":"大米中镉超标的缓解战略","authors":"Jun Song,&nbsp;Qiuchi Song,&nbsp;Dong Wang,&nbsp;Yonghong Liu","doi":"10.1111/1541-4337.13210","DOIUrl":null,"url":null,"abstract":"<p>Cadmium (Cd)-contaminated rice is a human food safety problem that lacks a clear solution. A large amount of rice having an excessive Cd content is processed yearly, but it cannot be discarded and placed in landfills because it will cause secondary pollution. How do we best cope with this toxic rice? From the perspectives of food safety, food waste prevention, and human hunger eradication, the use of contemporary physical, chemical, and biological techniques to lower the Cd content in postharvest Cd-contaminated rice so that it can be used safely is the best course of action. In this review, the contamination, chemical speciation, and distribution of Cd in rice are analyzed and discussed, as are the methods of Cd removal from rice, including a comparison of the advantages and disadvantages of various techniques. Owing to the limitations of current technology, research and technological development recommendations for removing Cd from rice grain are presented. The chemical and biological methods produce higher Cd-removal rates than physical methods. However, they are limited to small-scale laboratory applications and cannot be applied on a large industrial scale. For the efficient safe removal of Cd from food, mixed fermentation with lactic acid bacteria and yeast has good application prospects. However, limited strains having high Cd-removal rates have been screened. In addition, modern biotechnology has rarely been applied to reduce rice Cd levels. Therefore, applying genetic engineering techniques to rapidly obtain microorganisms with high Cd-removal rates in rice should be the focus of future research.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":null,"pages":null},"PeriodicalIF":12.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigation strategies for excessive cadmium in rice\",\"authors\":\"Jun Song,&nbsp;Qiuchi Song,&nbsp;Dong Wang,&nbsp;Yonghong Liu\",\"doi\":\"10.1111/1541-4337.13210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cadmium (Cd)-contaminated rice is a human food safety problem that lacks a clear solution. A large amount of rice having an excessive Cd content is processed yearly, but it cannot be discarded and placed in landfills because it will cause secondary pollution. How do we best cope with this toxic rice? From the perspectives of food safety, food waste prevention, and human hunger eradication, the use of contemporary physical, chemical, and biological techniques to lower the Cd content in postharvest Cd-contaminated rice so that it can be used safely is the best course of action. In this review, the contamination, chemical speciation, and distribution of Cd in rice are analyzed and discussed, as are the methods of Cd removal from rice, including a comparison of the advantages and disadvantages of various techniques. Owing to the limitations of current technology, research and technological development recommendations for removing Cd from rice grain are presented. The chemical and biological methods produce higher Cd-removal rates than physical methods. However, they are limited to small-scale laboratory applications and cannot be applied on a large industrial scale. For the efficient safe removal of Cd from food, mixed fermentation with lactic acid bacteria and yeast has good application prospects. However, limited strains having high Cd-removal rates have been screened. In addition, modern biotechnology has rarely been applied to reduce rice Cd levels. Therefore, applying genetic engineering techniques to rapidly obtain microorganisms with high Cd-removal rates in rice should be the focus of future research.</p>\",\"PeriodicalId\":155,\"journal\":{\"name\":\"Comprehensive Reviews in Food Science and Food Safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comprehensive Reviews in Food Science and Food Safety\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.13210\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Reviews in Food Science and Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.13210","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

镉污染的大米是一个人类食品安全问题,缺乏明确的解决方案。每年都会加工大量镉含量超标的大米,但不能将其丢弃并放入垃圾填埋场,因为这会造成二次污染。我们如何最好地应对这种有毒的大米?从食品安全、防止食物浪费和消除人类饥饿的角度来看,利用现代物理、化学和生物技术降低采后镉污染水稻中的镉含量,使其能够安全使用是最好的做法。本文分析和讨论了水稻中镉的污染、化学形态和分布,以及从水稻中去除镉的方法,包括比较各种技术的优缺点。针对现有技术的局限性,提出了去除稻米中镉的研究和技术发展建议。化学和生物方法比物理方法具有更高的镉去除率。然而,它们仅限于小规模的实验室应用,不能在大型工业规模上应用。为了有效、安全地去除食品中的镉,乳酸菌和酵母混合发酵具有良好的应用前景。然而,已经筛选出具有高镉去除率的有限菌株。此外,现代生物技术很少用于降低水稻镉含量。因此,应用基因工程技术在水稻中快速获得高镉去除率的微生物应成为未来研究的重点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mitigation strategies for excessive cadmium in rice

Cadmium (Cd)-contaminated rice is a human food safety problem that lacks a clear solution. A large amount of rice having an excessive Cd content is processed yearly, but it cannot be discarded and placed in landfills because it will cause secondary pollution. How do we best cope with this toxic rice? From the perspectives of food safety, food waste prevention, and human hunger eradication, the use of contemporary physical, chemical, and biological techniques to lower the Cd content in postharvest Cd-contaminated rice so that it can be used safely is the best course of action. In this review, the contamination, chemical speciation, and distribution of Cd in rice are analyzed and discussed, as are the methods of Cd removal from rice, including a comparison of the advantages and disadvantages of various techniques. Owing to the limitations of current technology, research and technological development recommendations for removing Cd from rice grain are presented. The chemical and biological methods produce higher Cd-removal rates than physical methods. However, they are limited to small-scale laboratory applications and cannot be applied on a large industrial scale. For the efficient safe removal of Cd from food, mixed fermentation with lactic acid bacteria and yeast has good application prospects. However, limited strains having high Cd-removal rates have been screened. In addition, modern biotechnology has rarely been applied to reduce rice Cd levels. Therefore, applying genetic engineering techniques to rapidly obtain microorganisms with high Cd-removal rates in rice should be the focus of future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.20
自引率
2.70%
发文量
182
期刊介绍: Comprehensive Reviews in Food Science and Food Safety (CRFSFS) is an online peer-reviewed journal established in 2002. It aims to provide scientists with unique and comprehensive reviews covering various aspects of food science and technology. CRFSFS publishes in-depth reviews addressing the chemical, microbiological, physical, sensory, and nutritional properties of foods, as well as food processing, engineering, analytical methods, and packaging. Manuscripts should contribute new insights and recommendations to the scientific knowledge on the topic. The journal prioritizes recent developments and encourages critical assessment of experimental design and interpretation of results. Topics related to food safety, such as preventive controls, ingredient contaminants, storage, food authenticity, and adulteration, are considered. Reviews on food hazards must demonstrate validity and reliability in real food systems, not just in model systems. Additionally, reviews on nutritional properties should provide a realistic perspective on how foods influence health, considering processing and storage effects on bioactivity. The journal also accepts reviews on consumer behavior, risk assessment, food regulations, and post-harvest physiology. Authors are encouraged to consult the Editor in Chief before submission to ensure topic suitability. Systematic reviews and meta-analyses on analytical and sensory methods, quality control, and food safety approaches are welcomed, with authors advised to follow IFIS Good review practice guidelines.
期刊最新文献
Unveiling the nutrient-wealth of black soybean: A holistic review of its bioactive compounds and health implications Electrospinning-based sensing technologies: Opportunities for food applications Cannabis-infused foods: Phytonutrients, health, and safe product innovations Emulsifying properties of egg proteins: Influencing factors, modification techniques, and applications Effect of withering/spreading on the physical and chemical properties of tea: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1