淡水沼泽森林沙芽孢杆菌内切葡聚糖酶的鉴定及其在枯草芽孢杆菌中的隐秘表达

Q3 Multidisciplinary Walailak Journal of Science and Technology Pub Date : 2016-03-05 DOI:10.14456/VOL14ISS5PP%P
P. Kanchanadumkerng, M. Sakka, K. Sakka, C. Wiwat
{"title":"淡水沼泽森林沙芽孢杆菌内切葡聚糖酶的鉴定及其在枯草芽孢杆菌中的隐秘表达","authors":"P. Kanchanadumkerng, M. Sakka, K. Sakka, C. Wiwat","doi":"10.14456/VOL14ISS5PP%P","DOIUrl":null,"url":null,"abstract":"Bacillus safensis M3 was newly isolated from freshwater swamp forest soil in western Thailand. The endoglucanase gene of B. safensis M3, cel9A, had an open reading frame of 1,848 bp encoding a 616 amino acid protein. Initial expression in Escherichia coli yielded a low amount of soluble protein in the cytosolic and secreted fractions. Cel9A was successfully expressed by recombinant B. subtilis with a 4-fold greater total enzyme activity than from recombinant E. coli . By SDS-PAGE analysis, the molecular weight of Cel9A was estimated to be 70 kDa. The optimal temperature of Cel9A was 55 °C and the optimal pH was 5 - 8. Cel9A had the highest activity in the pH range from 5 - 8, and the highest stability in pH range 4 to 10, which is useful for industrial applications. Notably, Cel9A was able to hydrolyze both mixed linkage glucan (lichenan) and hemicellulose (konjac glucomannan and oat spelt xylan) better than carboxymethylcellulose. Cel9A also showed a tolerance to metal ions and surfactants. In addition, recombinant B. subtilis with endoglucanase activity has potential for biotechnological applications and benefits in the optimization of large scale enzyme production with minimal medium using agriculture wastes and other inexpensive feedstock materials.","PeriodicalId":38275,"journal":{"name":"Walailak Journal of Science and Technology","volume":"14 1","pages":"199-213"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Characterization and Secretive Expression in Bacillus subtilis of Endoglucanase from Bacillus safensis Isolated from Freshwater Swamp Forest\",\"authors\":\"P. Kanchanadumkerng, M. Sakka, K. Sakka, C. Wiwat\",\"doi\":\"10.14456/VOL14ISS5PP%P\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacillus safensis M3 was newly isolated from freshwater swamp forest soil in western Thailand. The endoglucanase gene of B. safensis M3, cel9A, had an open reading frame of 1,848 bp encoding a 616 amino acid protein. Initial expression in Escherichia coli yielded a low amount of soluble protein in the cytosolic and secreted fractions. Cel9A was successfully expressed by recombinant B. subtilis with a 4-fold greater total enzyme activity than from recombinant E. coli . By SDS-PAGE analysis, the molecular weight of Cel9A was estimated to be 70 kDa. The optimal temperature of Cel9A was 55 °C and the optimal pH was 5 - 8. Cel9A had the highest activity in the pH range from 5 - 8, and the highest stability in pH range 4 to 10, which is useful for industrial applications. Notably, Cel9A was able to hydrolyze both mixed linkage glucan (lichenan) and hemicellulose (konjac glucomannan and oat spelt xylan) better than carboxymethylcellulose. Cel9A also showed a tolerance to metal ions and surfactants. In addition, recombinant B. subtilis with endoglucanase activity has potential for biotechnological applications and benefits in the optimization of large scale enzyme production with minimal medium using agriculture wastes and other inexpensive feedstock materials.\",\"PeriodicalId\":38275,\"journal\":{\"name\":\"Walailak Journal of Science and Technology\",\"volume\":\"14 1\",\"pages\":\"199-213\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Walailak Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14456/VOL14ISS5PP%P\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Walailak Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14456/VOL14ISS5PP%P","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 15

摘要

沙芽孢杆菌M3是从泰国西部淡水沼泽森林土壤中新分离到的。沙螺旋藻M3内切葡聚糖酶基因cel9A全长1848bp,编码616个氨基酸的蛋白。在大肠杆菌中的初始表达在细胞质和分泌部分产生少量的可溶性蛋白。重组枯草芽孢杆菌成功地表达了Cel9A,其总酶活性比重组大肠杆菌高4倍。通过SDS-PAGE分析,Cel9A的分子量估计为70 kDa。Cel9A的最佳温度为55℃,最佳pH为5 ~ 8。Cel9A在pH值5 ~ 8范围内具有最高的活性,在pH值4 ~ 10范围内具有最高的稳定性,可用于工业应用。值得注意的是,Cel9A对混合链接葡聚糖(荔枝)和半纤维素(魔芋葡甘露聚糖和燕麦木聚糖)的水解能力均优于羧甲基纤维素。Cel9A还表现出对金属离子和表面活性剂的耐受性。此外,具有内切葡聚糖酶活性的重组枯草芽孢杆菌具有潜在的生物技术应用潜力,并有利于优化利用农业废物和其他廉价原料,以最少的培养基大规模生产酶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization and Secretive Expression in Bacillus subtilis of Endoglucanase from Bacillus safensis Isolated from Freshwater Swamp Forest
Bacillus safensis M3 was newly isolated from freshwater swamp forest soil in western Thailand. The endoglucanase gene of B. safensis M3, cel9A, had an open reading frame of 1,848 bp encoding a 616 amino acid protein. Initial expression in Escherichia coli yielded a low amount of soluble protein in the cytosolic and secreted fractions. Cel9A was successfully expressed by recombinant B. subtilis with a 4-fold greater total enzyme activity than from recombinant E. coli . By SDS-PAGE analysis, the molecular weight of Cel9A was estimated to be 70 kDa. The optimal temperature of Cel9A was 55 °C and the optimal pH was 5 - 8. Cel9A had the highest activity in the pH range from 5 - 8, and the highest stability in pH range 4 to 10, which is useful for industrial applications. Notably, Cel9A was able to hydrolyze both mixed linkage glucan (lichenan) and hemicellulose (konjac glucomannan and oat spelt xylan) better than carboxymethylcellulose. Cel9A also showed a tolerance to metal ions and surfactants. In addition, recombinant B. subtilis with endoglucanase activity has potential for biotechnological applications and benefits in the optimization of large scale enzyme production with minimal medium using agriculture wastes and other inexpensive feedstock materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Walailak Journal of Science and Technology
Walailak Journal of Science and Technology Multidisciplinary-Multidisciplinary
CiteScore
0.80
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊介绍: The Walailak Journal of Science and Technology (Walailak J. Sci. & Tech. or WJST), is a peer-reviewed journal covering all areas of science and technology, launched in 2004. It is published 12 Issues (Monthly) by the Institute of Research and Innovation of Walailak University. The scope of the journal includes the following areas of research : - Natural Sciences: Biochemistry, Chemical Engineering, Chemistry, Materials Science, Mathematics, Molecular Biology, Physics and Astronomy. -Life Sciences: Allied Health Sciences, Biomedical Sciences, Dentistry, Genetics, Immunology and Microbiology, Medicine, Neuroscience, Nursing, Pharmaceutics, Psychology, Public Health, Tropical Medicine, Veterinary. -Applied Sciences: Agricultural, Aquaculture, Biotechnology, Computer Science, Cybernetics, Earth and Planetary, Energy, Engineering, Environmental, Food Science, Information Technology, Meat Science, Nanotechnology, Plant Sciences, Systemics
期刊最新文献
Automatic Screening of Lung Diseases by 3D Active Contour Method for Inhomogeneous Motion Estimation in CT Image Pairs Development and Validation of Corona Virus Anxiety Scale (CVAS) At-Home Activities and Subjective Well-Being of Foreign College Students in Thailand during the COVID-19 Pandemic Outbreak The Antiviral Activity of Andrographolide, the Active Metabolite from Andrographis paniculata (Burm. f.) Wall. ex Nees. against SARS-CoV-2 by Using Bio- and Chemoinformatic Tools The Distribution of COVID 19 based on Phylogeny Construction in Silico Sequences SARS-CoV-2 RNA at Genbank NCBI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1