{"title":"考虑乘员体型变化和正面碰撞严重程度的乘员约束系统优化研究","authors":"Yi Huang, Qing Zhou, Xiaowei Zhang, Cong Wang","doi":"10.1504/IJVS.2015.074373","DOIUrl":null,"url":null,"abstract":"Restraint system parameter configurations encouraged by the current legislative or consumer crash tests cannot provide tailored protection to occupants with different statures under various crash severities. The restraint system parameters should be adapted to different circumstances. In this study, a restraint system optimisation framework was built to explore optimal configurations for five different sizes of occupants in two crash severities. Seat position was treated as a variable in the design space. The optimisation results showed that optimal seat positions had clear patterns for the two crash severities. In high crash severity, dummies tended to sit closer to the knee bolster to achieve better contacts of airbag and knee bolster. In low crash severity, optimal seat positions were farther from knee bolster. With aggressively tuned pretensioner and stature dependent load limiting values, the dummies were efficiently restrained by the seat belt. Tailored protections to the ten cases were achieved after the optimisation, compared to the fixed parameter restraint system. Language: en","PeriodicalId":35143,"journal":{"name":"International Journal of Vehicle Safety","volume":"8 1","pages":"299-313"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJVS.2015.074373","citationCount":"4","resultStr":"{\"title\":\"Optimisation study of occupant restraint system concerning variations in occupant size and crash severity in frontal collisions\",\"authors\":\"Yi Huang, Qing Zhou, Xiaowei Zhang, Cong Wang\",\"doi\":\"10.1504/IJVS.2015.074373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Restraint system parameter configurations encouraged by the current legislative or consumer crash tests cannot provide tailored protection to occupants with different statures under various crash severities. The restraint system parameters should be adapted to different circumstances. In this study, a restraint system optimisation framework was built to explore optimal configurations for five different sizes of occupants in two crash severities. Seat position was treated as a variable in the design space. The optimisation results showed that optimal seat positions had clear patterns for the two crash severities. In high crash severity, dummies tended to sit closer to the knee bolster to achieve better contacts of airbag and knee bolster. In low crash severity, optimal seat positions were farther from knee bolster. With aggressively tuned pretensioner and stature dependent load limiting values, the dummies were efficiently restrained by the seat belt. Tailored protections to the ten cases were achieved after the optimisation, compared to the fixed parameter restraint system. Language: en\",\"PeriodicalId\":35143,\"journal\":{\"name\":\"International Journal of Vehicle Safety\",\"volume\":\"8 1\",\"pages\":\"299-313\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJVS.2015.074373\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJVS.2015.074373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJVS.2015.074373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Optimisation study of occupant restraint system concerning variations in occupant size and crash severity in frontal collisions
Restraint system parameter configurations encouraged by the current legislative or consumer crash tests cannot provide tailored protection to occupants with different statures under various crash severities. The restraint system parameters should be adapted to different circumstances. In this study, a restraint system optimisation framework was built to explore optimal configurations for five different sizes of occupants in two crash severities. Seat position was treated as a variable in the design space. The optimisation results showed that optimal seat positions had clear patterns for the two crash severities. In high crash severity, dummies tended to sit closer to the knee bolster to achieve better contacts of airbag and knee bolster. In low crash severity, optimal seat positions were farther from knee bolster. With aggressively tuned pretensioner and stature dependent load limiting values, the dummies were efficiently restrained by the seat belt. Tailored protections to the ten cases were achieved after the optimisation, compared to the fixed parameter restraint system. Language: en
期刊介绍:
The IJVS aims to provide a refereed and authoritative source of information in the field of vehicle safety design, research, and development. It serves applied scientists, engineers, policy makers and safety advocates with a platform to develop, promote, and coordinate the science, technology and practice of vehicle safety. IJVS also seeks to establish channels of communication between industry and academy, industry and government in the field of vehicle safety. IJVS is published quarterly. It covers the subjects of passive and active safety in road traffic as well as traffic related public health issues, from impact biomechanics to vehicle crashworthiness, and from crash avoidance to intelligent highway systems.