{"title":"一个简单的摩托车头盔有限元模型的开发","authors":"Ludk Hyník, Tomasz Bokowski, Wenle Lv","doi":"10.1504/IJVS.2018.097720","DOIUrl":null,"url":null,"abstract":"Motorcycle riders belong to the group of so-called vulnerable road users, for whom protection against an impact is an important issue due to the multi-directional loading and the complex kinematics after the impact. Virtual biomechanical human body models play an important role to assess injuries, especially for such complex scenarios. The major motorcycle riders' personal protective equipment is the helmet. Several authors developed their own helmet model taking into account various helmet details. The presented work concerns a simple finite element helmet model development and validation according to the ECE Regulation 22.05. The helmet is validated in several impact scenarios coupling the headform impactor to the helmet and throwing it to the defined anvils. The advantage of the developed helmet is the low calculation time step by fulfilling the regulation. It can be coupled to the human body model easily without decreasing the global calculation time step.","PeriodicalId":35143,"journal":{"name":"International Journal of Vehicle Safety","volume":"10 1","pages":"277-287"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJVS.2018.097720","citationCount":"4","resultStr":"{\"title\":\"Development of a simple motorcyclist helmet finite element model\",\"authors\":\"Ludk Hyník, Tomasz Bokowski, Wenle Lv\",\"doi\":\"10.1504/IJVS.2018.097720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motorcycle riders belong to the group of so-called vulnerable road users, for whom protection against an impact is an important issue due to the multi-directional loading and the complex kinematics after the impact. Virtual biomechanical human body models play an important role to assess injuries, especially for such complex scenarios. The major motorcycle riders' personal protective equipment is the helmet. Several authors developed their own helmet model taking into account various helmet details. The presented work concerns a simple finite element helmet model development and validation according to the ECE Regulation 22.05. The helmet is validated in several impact scenarios coupling the headform impactor to the helmet and throwing it to the defined anvils. The advantage of the developed helmet is the low calculation time step by fulfilling the regulation. It can be coupled to the human body model easily without decreasing the global calculation time step.\",\"PeriodicalId\":35143,\"journal\":{\"name\":\"International Journal of Vehicle Safety\",\"volume\":\"10 1\",\"pages\":\"277-287\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJVS.2018.097720\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJVS.2018.097720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJVS.2018.097720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Development of a simple motorcyclist helmet finite element model
Motorcycle riders belong to the group of so-called vulnerable road users, for whom protection against an impact is an important issue due to the multi-directional loading and the complex kinematics after the impact. Virtual biomechanical human body models play an important role to assess injuries, especially for such complex scenarios. The major motorcycle riders' personal protective equipment is the helmet. Several authors developed their own helmet model taking into account various helmet details. The presented work concerns a simple finite element helmet model development and validation according to the ECE Regulation 22.05. The helmet is validated in several impact scenarios coupling the headform impactor to the helmet and throwing it to the defined anvils. The advantage of the developed helmet is the low calculation time step by fulfilling the regulation. It can be coupled to the human body model easily without decreasing the global calculation time step.
期刊介绍:
The IJVS aims to provide a refereed and authoritative source of information in the field of vehicle safety design, research, and development. It serves applied scientists, engineers, policy makers and safety advocates with a platform to develop, promote, and coordinate the science, technology and practice of vehicle safety. IJVS also seeks to establish channels of communication between industry and academy, industry and government in the field of vehicle safety. IJVS is published quarterly. It covers the subjects of passive and active safety in road traffic as well as traffic related public health issues, from impact biomechanics to vehicle crashworthiness, and from crash avoidance to intelligent highway systems.