波蒂病毒科多蛋白的自动分割

J. Vargas, J. A. Velasco, G. Alvarez, Diego Linares, E. Bravo
{"title":"波蒂病毒科多蛋白的自动分割","authors":"J. Vargas, J. A. Velasco, G. Alvarez, Diego Linares, E. Bravo","doi":"10.1504/IJBRA.2015.073238","DOIUrl":null,"url":null,"abstract":"We describe an automatic segmentation method for polyproteins of the viruses belonging to the Potyviridae family. It uses machine learning techniques in order to predict the cleavage site which define the segments in which said polyproteins are cut in their process of functional maturation. The segmentation application is publicly available for use on a website and it can be accessed through the web service interface too. The prediction models have an average sensitivity of 0.79 and a Matthews correlation coefficient average of 0.23. This method is capable of predicting correctly (coinciding with previously published segmentation) the segmentation of sequences which come from Potyvirus and Rymovirus, genera. However accurate prediction capabilities are affected when faced with either atypical sequences or viruses belonging to less common genera in the Potyviridae family. Future work will focus on establishing greater flexibility in this sense.","PeriodicalId":35444,"journal":{"name":"International Journal of Bioinformatics Research and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJBRA.2015.073238","citationCount":"0","resultStr":"{\"title\":\"Automatic segmentation of Potyviridae family polyproteins\",\"authors\":\"J. Vargas, J. A. Velasco, G. Alvarez, Diego Linares, E. Bravo\",\"doi\":\"10.1504/IJBRA.2015.073238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe an automatic segmentation method for polyproteins of the viruses belonging to the Potyviridae family. It uses machine learning techniques in order to predict the cleavage site which define the segments in which said polyproteins are cut in their process of functional maturation. The segmentation application is publicly available for use on a website and it can be accessed through the web service interface too. The prediction models have an average sensitivity of 0.79 and a Matthews correlation coefficient average of 0.23. This method is capable of predicting correctly (coinciding with previously published segmentation) the segmentation of sequences which come from Potyvirus and Rymovirus, genera. However accurate prediction capabilities are affected when faced with either atypical sequences or viruses belonging to less common genera in the Potyviridae family. Future work will focus on establishing greater flexibility in this sense.\",\"PeriodicalId\":35444,\"journal\":{\"name\":\"International Journal of Bioinformatics Research and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJBRA.2015.073238\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bioinformatics Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJBRA.2015.073238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioinformatics Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBRA.2015.073238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一种针对波蒂病毒科病毒多蛋白的自动分割方法。它使用机器学习技术来预测切割位点,该位点定义了所述多蛋白在功能成熟过程中被切割的片段。分割应用程序在网站上公开可用,也可以通过web服务接口访问。预测模型的平均灵敏度为0.79,马修斯相关系数平均值为0.23。该方法能够正确预测来自Potyvirus和Rymovirus属的序列片段(与先前发表的片段一致)。然而,当面对非典型序列或属于potyvirridae家族中较不常见属的病毒时,准确的预测能力受到影响。今后的工作将集中于在这方面建立更大的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic segmentation of Potyviridae family polyproteins
We describe an automatic segmentation method for polyproteins of the viruses belonging to the Potyviridae family. It uses machine learning techniques in order to predict the cleavage site which define the segments in which said polyproteins are cut in their process of functional maturation. The segmentation application is publicly available for use on a website and it can be accessed through the web service interface too. The prediction models have an average sensitivity of 0.79 and a Matthews correlation coefficient average of 0.23. This method is capable of predicting correctly (coinciding with previously published segmentation) the segmentation of sequences which come from Potyvirus and Rymovirus, genera. However accurate prediction capabilities are affected when faced with either atypical sequences or viruses belonging to less common genera in the Potyviridae family. Future work will focus on establishing greater flexibility in this sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Bioinformatics Research and Applications
International Journal of Bioinformatics Research and Applications Health Professions-Health Information Management
CiteScore
0.60
自引率
0.00%
发文量
26
期刊介绍: Bioinformatics is an interdisciplinary research field that combines biology, computer science, mathematics and statistics into a broad-based field that will have profound impacts on all fields of biology. The emphasis of IJBRA is on basic bioinformatics research methods, tool development, performance evaluation and their applications in biology. IJBRA addresses the most innovative developments, research issues and solutions in bioinformatics and computational biology and their applications. Topics covered include Databases, bio-grid, system biology Biomedical image processing, modelling and simulation Bio-ontology and data mining, DNA assembly, clustering, mapping Computational genomics/proteomics Silico technology: computational intelligence, high performance computing E-health, telemedicine Gene expression, microarrays, identification, annotation Genetic algorithms, fuzzy logic, neural networks, data visualisation Hidden Markov models, machine learning, support vector machines Molecular evolution, phylogeny, modelling, simulation, sequence analysis Parallel algorithms/architectures, computational structural biology Phylogeny reconstruction algorithms, physiome, protein structure prediction Sequence assembly, search, alignment Signalling/computational biomedical data engineering Simulated annealing, statistical analysis, stochastic grammars.
期刊最新文献
CoSec In silico studies on Acalypha indica, Catharanthus roseus and Coleus aromaticus derivative compounds against Omicron Prediction of ncRNA from RNA-Seq Data using Machine Learning Techniques A Machine Learning Approach to Assisted Prediction of Alzheimer's Disease with Convolutional Neural Network Development of Predictive Model of Diabetic Using Supervised Machine Learning Classification Algorithm of Ensemble Voting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1