J. Martínez, Nelson Lopez-Jimenez, Tao Meng, S. S. Iyengar
{"title":"预测癌症进化过程中的DNA突变","authors":"J. Martínez, Nelson Lopez-Jimenez, Tao Meng, S. S. Iyengar","doi":"10.1504/IJBRA.2015.069186","DOIUrl":null,"url":null,"abstract":"Bio-systems are inherently complex information processing systems. Their physiological complexities limit the formulation and testing of a hypothesis for their behaviour. Our goal here was to test a computational framework utilising published data from a longitudinal study of patients with acute myeloid leukaemia (AML), whose DNA from both normal and malignant tissues were subjected to NGS analysis at various points in time. By processing the sequencing data before relapse time, we tested our framework by predicting the regions of the genome to be mutated at relapse time and, later, by comparing our results with the actual regions that showed mutations (discovered by genome sequencing at relapse time). After a detailed statistical analysis, the resulting correlation coefficient (degree of matching of proposed framework with real data) is 0.9816 ± 0.009 at 95% confidence interval. This high performance from our proposed framework opens new research opportunities for bioinformatics researchers and clinical doctors.","PeriodicalId":35444,"journal":{"name":"International Journal of Bioinformatics Research and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJBRA.2015.069186","citationCount":"1","resultStr":"{\"title\":\"Predicting DNA mutations during cancer evolution\",\"authors\":\"J. Martínez, Nelson Lopez-Jimenez, Tao Meng, S. S. Iyengar\",\"doi\":\"10.1504/IJBRA.2015.069186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bio-systems are inherently complex information processing systems. Their physiological complexities limit the formulation and testing of a hypothesis for their behaviour. Our goal here was to test a computational framework utilising published data from a longitudinal study of patients with acute myeloid leukaemia (AML), whose DNA from both normal and malignant tissues were subjected to NGS analysis at various points in time. By processing the sequencing data before relapse time, we tested our framework by predicting the regions of the genome to be mutated at relapse time and, later, by comparing our results with the actual regions that showed mutations (discovered by genome sequencing at relapse time). After a detailed statistical analysis, the resulting correlation coefficient (degree of matching of proposed framework with real data) is 0.9816 ± 0.009 at 95% confidence interval. This high performance from our proposed framework opens new research opportunities for bioinformatics researchers and clinical doctors.\",\"PeriodicalId\":35444,\"journal\":{\"name\":\"International Journal of Bioinformatics Research and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJBRA.2015.069186\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bioinformatics Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJBRA.2015.069186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioinformatics Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBRA.2015.069186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Health Professions","Score":null,"Total":0}
Bio-systems are inherently complex information processing systems. Their physiological complexities limit the formulation and testing of a hypothesis for their behaviour. Our goal here was to test a computational framework utilising published data from a longitudinal study of patients with acute myeloid leukaemia (AML), whose DNA from both normal and malignant tissues were subjected to NGS analysis at various points in time. By processing the sequencing data before relapse time, we tested our framework by predicting the regions of the genome to be mutated at relapse time and, later, by comparing our results with the actual regions that showed mutations (discovered by genome sequencing at relapse time). After a detailed statistical analysis, the resulting correlation coefficient (degree of matching of proposed framework with real data) is 0.9816 ± 0.009 at 95% confidence interval. This high performance from our proposed framework opens new research opportunities for bioinformatics researchers and clinical doctors.
期刊介绍:
Bioinformatics is an interdisciplinary research field that combines biology, computer science, mathematics and statistics into a broad-based field that will have profound impacts on all fields of biology. The emphasis of IJBRA is on basic bioinformatics research methods, tool development, performance evaluation and their applications in biology. IJBRA addresses the most innovative developments, research issues and solutions in bioinformatics and computational biology and their applications. Topics covered include Databases, bio-grid, system biology Biomedical image processing, modelling and simulation Bio-ontology and data mining, DNA assembly, clustering, mapping Computational genomics/proteomics Silico technology: computational intelligence, high performance computing E-health, telemedicine Gene expression, microarrays, identification, annotation Genetic algorithms, fuzzy logic, neural networks, data visualisation Hidden Markov models, machine learning, support vector machines Molecular evolution, phylogeny, modelling, simulation, sequence analysis Parallel algorithms/architectures, computational structural biology Phylogeny reconstruction algorithms, physiome, protein structure prediction Sequence assembly, search, alignment Signalling/computational biomedical data engineering Simulated annealing, statistical analysis, stochastic grammars.