基于排列的模拟退火算法预测假结RNA二级结构

Herbert H. Tsang, K. Wiese
{"title":"基于排列的模拟退火算法预测假结RNA二级结构","authors":"Herbert H. Tsang, K. Wiese","doi":"10.1504/IJBRA.2015.071938","DOIUrl":null,"url":null,"abstract":"Pseudoknots are RNA tertiary structures which perform essential biological functions. This paper discusses SARNA-Predict-pk, a RNA pseudoknotted secondary structure prediction algorithm based on Simulated Annealing (SA). The research presented here extends previous work of SARNA-Predict and further examines the effect of the new algorithm to include prediction of RNA secondary structure with pseudoknots. An evaluation of the performance of SARNA-Predict-pk in terms of prediction accuracy is made via comparison with several state-of-the-art prediction algorithms using 20 individual known structures from seven RNA classes. We measured the sensitivity and specificity of nine prediction algorithms. Three of these are dynamic programming algorithms: Pseudoknot (pknotsRE), NUPACK, and pknotsRG-mfe. One is using the statistical clustering approach: Sfold and the other five are heuristic algorithms: SARNA-Predict-pk, ILM, STAR, IPknot and HotKnots algorithms. The results presented in this paper demonstrate that SARNA-Predict-pk can out-perform other state-of-the-art algorithms in terms of prediction accuracy. This supports the use of the proposed method on pseudoknotted RNA secondary structure prediction of other known structures.","PeriodicalId":35444,"journal":{"name":"International Journal of Bioinformatics Research and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJBRA.2015.071938","citationCount":"2","resultStr":"{\"title\":\"A permutation based simulated annealing algorithm to predict pseudoknotted RNA secondary structures\",\"authors\":\"Herbert H. Tsang, K. Wiese\",\"doi\":\"10.1504/IJBRA.2015.071938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pseudoknots are RNA tertiary structures which perform essential biological functions. This paper discusses SARNA-Predict-pk, a RNA pseudoknotted secondary structure prediction algorithm based on Simulated Annealing (SA). The research presented here extends previous work of SARNA-Predict and further examines the effect of the new algorithm to include prediction of RNA secondary structure with pseudoknots. An evaluation of the performance of SARNA-Predict-pk in terms of prediction accuracy is made via comparison with several state-of-the-art prediction algorithms using 20 individual known structures from seven RNA classes. We measured the sensitivity and specificity of nine prediction algorithms. Three of these are dynamic programming algorithms: Pseudoknot (pknotsRE), NUPACK, and pknotsRG-mfe. One is using the statistical clustering approach: Sfold and the other five are heuristic algorithms: SARNA-Predict-pk, ILM, STAR, IPknot and HotKnots algorithms. The results presented in this paper demonstrate that SARNA-Predict-pk can out-perform other state-of-the-art algorithms in terms of prediction accuracy. This supports the use of the proposed method on pseudoknotted RNA secondary structure prediction of other known structures.\",\"PeriodicalId\":35444,\"journal\":{\"name\":\"International Journal of Bioinformatics Research and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJBRA.2015.071938\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bioinformatics Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJBRA.2015.071938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioinformatics Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBRA.2015.071938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 2

摘要

假结是具有重要生物学功能的RNA三级结构。本文讨论了基于模拟退火(SA)的RNA伪结二级结构预测算法SARNA-Predict-pk。本文提出的研究扩展了SARNA-Predict之前的工作,并进一步研究了新算法的效果,包括预测带有假结的RNA二级结构。通过与几种最先进的预测算法进行比较,评估了SARNA-Predict-pk在预测精度方面的性能,这些算法使用了来自7个RNA类别的20个单独的已知结构。我们测量了9种预测算法的敏感性和特异性。其中三种是动态规划算法:Pseudoknot (pknotsRE)、NUPACK和pknotsRG-mfe。一种是使用统计聚类方法:Sfold,另外五种是启发式算法:SARNA-Predict-pk、ILM、STAR、IPknot和HotKnots算法。本文的结果表明,SARNA-Predict-pk在预测精度方面优于其他最先进的算法。这支持了该方法在其他已知结构的假结RNA二级结构预测中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A permutation based simulated annealing algorithm to predict pseudoknotted RNA secondary structures
Pseudoknots are RNA tertiary structures which perform essential biological functions. This paper discusses SARNA-Predict-pk, a RNA pseudoknotted secondary structure prediction algorithm based on Simulated Annealing (SA). The research presented here extends previous work of SARNA-Predict and further examines the effect of the new algorithm to include prediction of RNA secondary structure with pseudoknots. An evaluation of the performance of SARNA-Predict-pk in terms of prediction accuracy is made via comparison with several state-of-the-art prediction algorithms using 20 individual known structures from seven RNA classes. We measured the sensitivity and specificity of nine prediction algorithms. Three of these are dynamic programming algorithms: Pseudoknot (pknotsRE), NUPACK, and pknotsRG-mfe. One is using the statistical clustering approach: Sfold and the other five are heuristic algorithms: SARNA-Predict-pk, ILM, STAR, IPknot and HotKnots algorithms. The results presented in this paper demonstrate that SARNA-Predict-pk can out-perform other state-of-the-art algorithms in terms of prediction accuracy. This supports the use of the proposed method on pseudoknotted RNA secondary structure prediction of other known structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Bioinformatics Research and Applications
International Journal of Bioinformatics Research and Applications Health Professions-Health Information Management
CiteScore
0.60
自引率
0.00%
发文量
26
期刊介绍: Bioinformatics is an interdisciplinary research field that combines biology, computer science, mathematics and statistics into a broad-based field that will have profound impacts on all fields of biology. The emphasis of IJBRA is on basic bioinformatics research methods, tool development, performance evaluation and their applications in biology. IJBRA addresses the most innovative developments, research issues and solutions in bioinformatics and computational biology and their applications. Topics covered include Databases, bio-grid, system biology Biomedical image processing, modelling and simulation Bio-ontology and data mining, DNA assembly, clustering, mapping Computational genomics/proteomics Silico technology: computational intelligence, high performance computing E-health, telemedicine Gene expression, microarrays, identification, annotation Genetic algorithms, fuzzy logic, neural networks, data visualisation Hidden Markov models, machine learning, support vector machines Molecular evolution, phylogeny, modelling, simulation, sequence analysis Parallel algorithms/architectures, computational structural biology Phylogeny reconstruction algorithms, physiome, protein structure prediction Sequence assembly, search, alignment Signalling/computational biomedical data engineering Simulated annealing, statistical analysis, stochastic grammars.
期刊最新文献
CoSec In silico studies on Acalypha indica, Catharanthus roseus and Coleus aromaticus derivative compounds against Omicron Prediction of ncRNA from RNA-Seq Data using Machine Learning Techniques A Machine Learning Approach to Assisted Prediction of Alzheimer's Disease with Convolutional Neural Network Development of Predictive Model of Diabetic Using Supervised Machine Learning Classification Algorithm of Ensemble Voting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1