{"title":"基于支持向量机的加热参数预测","authors":"Wang Mei-ping, Tian Qi","doi":"10.1504/IJWMC.2015.069391","DOIUrl":null,"url":null,"abstract":"Considering the questions of complex non-linearity, large thermal inertia, retardance of a district heating system, it is very difficult to establish accurate mathematical models of heating parameters prediction for the heating system. Correlation analysis of influence factors is used to obtain the major factors influencing heating parameters through analysing operational data of a heating system; these factors serve as input parameters of the predicting model. This paper describes a prediction method that combines Support Vector Machine SVM with neural network. The method creates a network structure between heating parameters and its influence factors. Evaluation indexes of relative error and correlation coefficients are given to analyse the feasibility of the method within the scope of engineering applications through using the network model to regress and predict the heating parameters and compare them with testing data. It turned out that the prediction technique provides powerful guidance for operation of the district heating system.","PeriodicalId":53709,"journal":{"name":"International Journal of Wireless and Mobile Computing","volume":"8 1","pages":"294-300"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJWMC.2015.069391","citationCount":"0","resultStr":"{\"title\":\"Prediction of heating parameters based on support vector machine\",\"authors\":\"Wang Mei-ping, Tian Qi\",\"doi\":\"10.1504/IJWMC.2015.069391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering the questions of complex non-linearity, large thermal inertia, retardance of a district heating system, it is very difficult to establish accurate mathematical models of heating parameters prediction for the heating system. Correlation analysis of influence factors is used to obtain the major factors influencing heating parameters through analysing operational data of a heating system; these factors serve as input parameters of the predicting model. This paper describes a prediction method that combines Support Vector Machine SVM with neural network. The method creates a network structure between heating parameters and its influence factors. Evaluation indexes of relative error and correlation coefficients are given to analyse the feasibility of the method within the scope of engineering applications through using the network model to regress and predict the heating parameters and compare them with testing data. It turned out that the prediction technique provides powerful guidance for operation of the district heating system.\",\"PeriodicalId\":53709,\"journal\":{\"name\":\"International Journal of Wireless and Mobile Computing\",\"volume\":\"8 1\",\"pages\":\"294-300\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJWMC.2015.069391\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Wireless and Mobile Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJWMC.2015.069391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Wireless and Mobile Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJWMC.2015.069391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Prediction of heating parameters based on support vector machine
Considering the questions of complex non-linearity, large thermal inertia, retardance of a district heating system, it is very difficult to establish accurate mathematical models of heating parameters prediction for the heating system. Correlation analysis of influence factors is used to obtain the major factors influencing heating parameters through analysing operational data of a heating system; these factors serve as input parameters of the predicting model. This paper describes a prediction method that combines Support Vector Machine SVM with neural network. The method creates a network structure between heating parameters and its influence factors. Evaluation indexes of relative error and correlation coefficients are given to analyse the feasibility of the method within the scope of engineering applications through using the network model to regress and predict the heating parameters and compare them with testing data. It turned out that the prediction technique provides powerful guidance for operation of the district heating system.
期刊介绍:
The explosive growth of wide-area cellular systems and local area wireless networks which promise to make integrated networks a reality, and the development of "wearable" computers and the emergence of "pervasive" computing paradigm, are just the beginning of "The Wireless and Mobile Revolution". The realisation of wireless connectivity is bringing fundamental changes to telecommunications and computing and profoundly affects the way we compute, communicate, and interact. It provides fully distributed and ubiquitous mobile computing and communications, thus bringing an end to the tyranny of geography.