Iddrisu Awudu, W. Wilson, M. Fathi, Khalid Bachkar, Bruce Dahl, Adolf Acquaye
{"title":"基于大数据copula的聚类在可再生能源系统对冲中的应用","authors":"Iddrisu Awudu, W. Wilson, M. Fathi, Khalid Bachkar, Bruce Dahl, Adolf Acquaye","doi":"10.1504/ijrm.2020.10032057","DOIUrl":null,"url":null,"abstract":"In this paper, we formulate an optimisation-hedging model which demonstrates how operational research methods and analytics can take advantage of big data sources to inform business decisions in the renewable energy sector. This is achieved by incorporating an analytical technique called co-cluster (copula clustering) algorithm in measuring risks confronting a renewable energy producer. The model development and co-cluster methodology are illustrated using an empirical case study under three market scenarios for an ethanol producer. Our results show that adopting the co-cluster algorithm gives the ethanol processor an improved risk management strategy by capturing marginal relationships among the input and output prices; hence highlighting the advantages of big data and data analytics in business decision making within the renewable energy sector.","PeriodicalId":39519,"journal":{"name":"International Journal of Revenue Management","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of big data copula-based clustering for hedging in renewable energy systems\",\"authors\":\"Iddrisu Awudu, W. Wilson, M. Fathi, Khalid Bachkar, Bruce Dahl, Adolf Acquaye\",\"doi\":\"10.1504/ijrm.2020.10032057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we formulate an optimisation-hedging model which demonstrates how operational research methods and analytics can take advantage of big data sources to inform business decisions in the renewable energy sector. This is achieved by incorporating an analytical technique called co-cluster (copula clustering) algorithm in measuring risks confronting a renewable energy producer. The model development and co-cluster methodology are illustrated using an empirical case study under three market scenarios for an ethanol producer. Our results show that adopting the co-cluster algorithm gives the ethanol processor an improved risk management strategy by capturing marginal relationships among the input and output prices; hence highlighting the advantages of big data and data analytics in business decision making within the renewable energy sector.\",\"PeriodicalId\":39519,\"journal\":{\"name\":\"International Journal of Revenue Management\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Revenue Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijrm.2020.10032057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Revenue Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijrm.2020.10032057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
Application of big data copula-based clustering for hedging in renewable energy systems
In this paper, we formulate an optimisation-hedging model which demonstrates how operational research methods and analytics can take advantage of big data sources to inform business decisions in the renewable energy sector. This is achieved by incorporating an analytical technique called co-cluster (copula clustering) algorithm in measuring risks confronting a renewable energy producer. The model development and co-cluster methodology are illustrated using an empirical case study under three market scenarios for an ethanol producer. Our results show that adopting the co-cluster algorithm gives the ethanol processor an improved risk management strategy by capturing marginal relationships among the input and output prices; hence highlighting the advantages of big data and data analytics in business decision making within the renewable energy sector.
期刊介绍:
The IJRM is an interdisciplinary and refereed journal that provides authoritative sources of reference and an international forum in the field of revenue management. IJRM publishes well-written and academically rigorous manuscripts. Both theoretic development and applied research are welcome.