基于大数据copula的聚类在可再生能源系统对冲中的应用

Q4 Economics, Econometrics and Finance International Journal of Revenue Management Pub Date : 2020-01-01 DOI:10.1504/ijrm.2020.10032057
Iddrisu Awudu, W. Wilson, M. Fathi, Khalid Bachkar, Bruce Dahl, Adolf Acquaye
{"title":"基于大数据copula的聚类在可再生能源系统对冲中的应用","authors":"Iddrisu Awudu, W. Wilson, M. Fathi, Khalid Bachkar, Bruce Dahl, Adolf Acquaye","doi":"10.1504/ijrm.2020.10032057","DOIUrl":null,"url":null,"abstract":"In this paper, we formulate an optimisation-hedging model which demonstrates how operational research methods and analytics can take advantage of big data sources to inform business decisions in the renewable energy sector. This is achieved by incorporating an analytical technique called co-cluster (copula clustering) algorithm in measuring risks confronting a renewable energy producer. The model development and co-cluster methodology are illustrated using an empirical case study under three market scenarios for an ethanol producer. Our results show that adopting the co-cluster algorithm gives the ethanol processor an improved risk management strategy by capturing marginal relationships among the input and output prices; hence highlighting the advantages of big data and data analytics in business decision making within the renewable energy sector.","PeriodicalId":39519,"journal":{"name":"International Journal of Revenue Management","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of big data copula-based clustering for hedging in renewable energy systems\",\"authors\":\"Iddrisu Awudu, W. Wilson, M. Fathi, Khalid Bachkar, Bruce Dahl, Adolf Acquaye\",\"doi\":\"10.1504/ijrm.2020.10032057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we formulate an optimisation-hedging model which demonstrates how operational research methods and analytics can take advantage of big data sources to inform business decisions in the renewable energy sector. This is achieved by incorporating an analytical technique called co-cluster (copula clustering) algorithm in measuring risks confronting a renewable energy producer. The model development and co-cluster methodology are illustrated using an empirical case study under three market scenarios for an ethanol producer. Our results show that adopting the co-cluster algorithm gives the ethanol processor an improved risk management strategy by capturing marginal relationships among the input and output prices; hence highlighting the advantages of big data and data analytics in business decision making within the renewable energy sector.\",\"PeriodicalId\":39519,\"journal\":{\"name\":\"International Journal of Revenue Management\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Revenue Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijrm.2020.10032057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Revenue Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijrm.2020.10032057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们制定了一个优化对冲模型,该模型展示了运筹学方法和分析如何利用大数据源为可再生能源领域的商业决策提供信息。这是通过结合一种称为共聚类(copula聚类)算法的分析技术来衡量可再生能源生产商面临的风险来实现的。模型的发展和共同集群的方法是用实证案例研究下的乙醇生产商的三个市场情景说明。我们的研究结果表明,采用共聚类算法通过捕捉投入和产出价格之间的边际关系,为乙醇加工企业提供了一种改进的风险管理策略;因此,突出了大数据和数据分析在可再生能源行业商业决策中的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of big data copula-based clustering for hedging in renewable energy systems
In this paper, we formulate an optimisation-hedging model which demonstrates how operational research methods and analytics can take advantage of big data sources to inform business decisions in the renewable energy sector. This is achieved by incorporating an analytical technique called co-cluster (copula clustering) algorithm in measuring risks confronting a renewable energy producer. The model development and co-cluster methodology are illustrated using an empirical case study under three market scenarios for an ethanol producer. Our results show that adopting the co-cluster algorithm gives the ethanol processor an improved risk management strategy by capturing marginal relationships among the input and output prices; hence highlighting the advantages of big data and data analytics in business decision making within the renewable energy sector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Revenue Management
International Journal of Revenue Management Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
1.40
自引率
0.00%
发文量
4
期刊介绍: The IJRM is an interdisciplinary and refereed journal that provides authoritative sources of reference and an international forum in the field of revenue management. IJRM publishes well-written and academically rigorous manuscripts. Both theoretic development and applied research are welcome.
期刊最新文献
PRIORITIZING THE REQUISITE SKILLS POSSESSED BY REVENUE MANAGERS OF HOSPITALITY INDUSTRY: AN ANALYTIC HIERARCHY PROCESS APPROACH Air cargo revenue management: A state-of-the-art review Nash Equilibrium Computation in Airline Frequency Game Optimal finite horizon bargaining mechanisms with refusal cost A Dynamic Pricing Model for Carbon-Aware Compute Clusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1