{"title":"含两个动脉瘤的动脉段含红细胞压积变化的粘弹性血流数值模拟","authors":"A. Guaily, Ahmed Elhanafy, A. Elsaid","doi":"10.1504/PCFD.2021.10037989","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":54552,"journal":{"name":"Progress in Computational Fluid Dynamics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Numerical simulation of viscoelastic blood flow with hematocrit variation in an arterial segment with two aneurysms\",\"authors\":\"A. Guaily, Ahmed Elhanafy, A. Elsaid\",\"doi\":\"10.1504/PCFD.2021.10037989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":54552,\"journal\":{\"name\":\"Progress in Computational Fluid Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Computational Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1504/PCFD.2021.10037989\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/PCFD.2021.10037989","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
期刊介绍:
CFD is now considered an indispensable analysis/design tool in an ever-increasing range of industrial applications. Practical flow problems are often so complex that a high level of ingenuity is required. Thus, besides the development work in CFD, innovative CFD applications are also encouraged. PCFD''s ultimate goal is to provide a common platform for model/software developers and users by balanced international/interdisciplinary contributions, disseminating information relating to development/refinement of mathematical and numerical models, software tools and their innovative applications in CFD.
Topics covered include:
-Turbulence-
Two-phase flows-
Heat transfer-
Chemical reactions and combustion-
Acoustics-
Unsteady flows-
Free-surfaces-
Fluid-solid interaction-
Navier-Stokes solution techniques for incompressible and compressible flows-
Discretisation methods and schemes-
Convergence acceleration procedures-
Grid generation and adaptation techniques-
Mesh-free methods-
Distributed computing-
Other relevant topics