基于小波的基因选择方法预测弥漫性大b细胞淋巴瘤患者的生存

IF 0.2 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY International Journal of Data Mining and Bioinformatics Pub Date : 2015-08-01 DOI:10.1504/IJDMB.2015.071556
M. Farhadian, H. Mahjub, A. Moghimbeigi, P. Lisboa, J. Poorolajal, Muharram Mansoorizadeh
{"title":"基于小波的基因选择方法预测弥漫性大b细胞淋巴瘤患者的生存","authors":"M. Farhadian, H. Mahjub, A. Moghimbeigi, P. Lisboa, J. Poorolajal, Muharram Mansoorizadeh","doi":"10.1504/IJDMB.2015.071556","DOIUrl":null,"url":null,"abstract":"Microarray technology allows simultaneous measurements of expression levels for thousands of genes. An important aspect of microarray studies includes the prediction of patient survival based on their gene expression profile. This naturally calls for the use of a dimension reduction procedure together with the survival prediction model. In this study, a new method based on wavelet transform for survival-relevant gene selection is presented. Cox proportional hazard model is typically used to build prediction model for patients' survival using the selected genes. The prediction model will be evaluated with the R2, concordance index, likelihood ratio statistic and Akaike information criteria. The results proved that good performance of survival prediction is achieved based on the selected genes. The results suggested the possibility of developing more advanced tools based on wavelets for gene selection from microarray data sets in the context of survival analysis.","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"13 2 1","pages":"197-210"},"PeriodicalIF":0.2000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJDMB.2015.071556","citationCount":"1","resultStr":"{\"title\":\"Wavelet-based gene selection method for survival prediction in diffuse large B-cell lymphomas patients\",\"authors\":\"M. Farhadian, H. Mahjub, A. Moghimbeigi, P. Lisboa, J. Poorolajal, Muharram Mansoorizadeh\",\"doi\":\"10.1504/IJDMB.2015.071556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microarray technology allows simultaneous measurements of expression levels for thousands of genes. An important aspect of microarray studies includes the prediction of patient survival based on their gene expression profile. This naturally calls for the use of a dimension reduction procedure together with the survival prediction model. In this study, a new method based on wavelet transform for survival-relevant gene selection is presented. Cox proportional hazard model is typically used to build prediction model for patients' survival using the selected genes. The prediction model will be evaluated with the R2, concordance index, likelihood ratio statistic and Akaike information criteria. The results proved that good performance of survival prediction is achieved based on the selected genes. The results suggested the possibility of developing more advanced tools based on wavelets for gene selection from microarray data sets in the context of survival analysis.\",\"PeriodicalId\":54964,\"journal\":{\"name\":\"International Journal of Data Mining and Bioinformatics\",\"volume\":\"13 2 1\",\"pages\":\"197-210\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJDMB.2015.071556\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Mining and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1504/IJDMB.2015.071556\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/IJDMB.2015.071556","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

微阵列技术允许同时测量数千个基因的表达水平。微阵列研究的一个重要方面包括基于基因表达谱预测患者生存。这自然需要使用降维程序和生存预测模型。本文提出了一种基于小波变换的生存相关基因选择新方法。通常采用Cox比例风险模型,利用所选基因建立患者生存预测模型。采用R2、一致性指数、似然比统计量和赤池信息准则对预测模型进行评价。结果表明,基于所选基因的生存预测取得了较好的效果。结果表明,在生存分析的背景下,基于小波的基因选择微阵列数据集开发更先进的工具的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wavelet-based gene selection method for survival prediction in diffuse large B-cell lymphomas patients
Microarray technology allows simultaneous measurements of expression levels for thousands of genes. An important aspect of microarray studies includes the prediction of patient survival based on their gene expression profile. This naturally calls for the use of a dimension reduction procedure together with the survival prediction model. In this study, a new method based on wavelet transform for survival-relevant gene selection is presented. Cox proportional hazard model is typically used to build prediction model for patients' survival using the selected genes. The prediction model will be evaluated with the R2, concordance index, likelihood ratio statistic and Akaike information criteria. The results proved that good performance of survival prediction is achieved based on the selected genes. The results suggested the possibility of developing more advanced tools based on wavelets for gene selection from microarray data sets in the context of survival analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Mining bioinformatics data is an emerging area at the intersection between bioinformatics and data mining. The objective of IJDMB is to facilitate collaboration between data mining researchers and bioinformaticians by presenting cutting edge research topics and methodologies in the area of data mining for bioinformatics. This perspective acknowledges the inter-disciplinary nature of research in data mining and bioinformatics and provides a unified forum for researchers/practitioners/students/policy makers to share the latest research and developments in this fast growing multi-disciplinary research area.
期刊最新文献
Data mining based integration method of infant critical and critical information in modern hospital Fast retrieval method of biomedical literature based on feature mining Research on Cloud Storage Biological Data De duplication Method Based on Simhash Algorithm Identification of disease-related miRNAs based on Weighted K-Nearest Known Neighbors and Inductive Matrix Completion Diagnosis of Parkinson’s disease genes using LSTM and MLP based multi-feature extraction methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1