{"title":"TrieAMD:一种可扩展的、高效的先验基序发现方法","authors":"Isra M. Al-Turaiki, G. Badr, H. Mathkour","doi":"10.1504/IJDMB.2015.070833","DOIUrl":null,"url":null,"abstract":"Motif discovery is the problem of finding recurring patterns in biological sequences. It is one of the hardest and long-standing problems in bioinformatics. Apriori is a well-known data-mining algorithm for the discovery of frequent patterns in large datasets. In this paper, we apply the Apriori algorithm and use the Trie data structure to discover motifs. We propose several modifications so that we can adapt the classic Apriori to our problem. Experiments are conducted on Tompa's benchmark to investigate the performance of our proposed algorithm, the Trie-based Apriori Motif Discovery (TrieAMD). Results show that our algorithm outperforms all of the tested tools on real datasets for the average sensitivity measure, which means that our approach is able to discover more motifs. In terms of specificity, the performance of our algorithm is comparable to the other tools. The results also confirm both linear time and linear space scalability of the algorithm.","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"13 1 1","pages":"13-30"},"PeriodicalIF":0.2000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJDMB.2015.070833","citationCount":"4","resultStr":"{\"title\":\"TrieAMD: a scalable and efficient apriori motif discovery approach\",\"authors\":\"Isra M. Al-Turaiki, G. Badr, H. Mathkour\",\"doi\":\"10.1504/IJDMB.2015.070833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motif discovery is the problem of finding recurring patterns in biological sequences. It is one of the hardest and long-standing problems in bioinformatics. Apriori is a well-known data-mining algorithm for the discovery of frequent patterns in large datasets. In this paper, we apply the Apriori algorithm and use the Trie data structure to discover motifs. We propose several modifications so that we can adapt the classic Apriori to our problem. Experiments are conducted on Tompa's benchmark to investigate the performance of our proposed algorithm, the Trie-based Apriori Motif Discovery (TrieAMD). Results show that our algorithm outperforms all of the tested tools on real datasets for the average sensitivity measure, which means that our approach is able to discover more motifs. In terms of specificity, the performance of our algorithm is comparable to the other tools. The results also confirm both linear time and linear space scalability of the algorithm.\",\"PeriodicalId\":54964,\"journal\":{\"name\":\"International Journal of Data Mining and Bioinformatics\",\"volume\":\"13 1 1\",\"pages\":\"13-30\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJDMB.2015.070833\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Mining and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1504/IJDMB.2015.070833\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/IJDMB.2015.070833","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
TrieAMD: a scalable and efficient apriori motif discovery approach
Motif discovery is the problem of finding recurring patterns in biological sequences. It is one of the hardest and long-standing problems in bioinformatics. Apriori is a well-known data-mining algorithm for the discovery of frequent patterns in large datasets. In this paper, we apply the Apriori algorithm and use the Trie data structure to discover motifs. We propose several modifications so that we can adapt the classic Apriori to our problem. Experiments are conducted on Tompa's benchmark to investigate the performance of our proposed algorithm, the Trie-based Apriori Motif Discovery (TrieAMD). Results show that our algorithm outperforms all of the tested tools on real datasets for the average sensitivity measure, which means that our approach is able to discover more motifs. In terms of specificity, the performance of our algorithm is comparable to the other tools. The results also confirm both linear time and linear space scalability of the algorithm.
期刊介绍:
Mining bioinformatics data is an emerging area at the intersection between bioinformatics and data mining. The objective of IJDMB is to facilitate collaboration between data mining researchers and bioinformaticians by presenting cutting edge research topics and methodologies in the area of data mining for bioinformatics. This perspective acknowledges the inter-disciplinary nature of research in data mining and bioinformatics and provides a unified forum for researchers/practitioners/students/policy makers to share the latest research and developments in this fast growing multi-disciplinary research area.