基于多时相多光谱和高光谱卫星数据的树种分类新方法

IF 1.7 3区 农林科学 Q2 FORESTRY Silva Fennica Pub Date : 2020-01-01 DOI:10.14214/sf.10143
O. Grigorieva, O. Brovkina, A. Saidov
{"title":"基于多时相多光谱和高光谱卫星数据的树种分类新方法","authors":"O. Grigorieva, O. Brovkina, A. Saidov","doi":"10.14214/sf.10143","DOIUrl":null,"url":null,"abstract":"This study proposes an original method for tree species classification by satellite remote sensing. The method uses multitemporal multispectral (Landsat OLI) and hyperspectral (Resurs-P) data acquired from determined vegetation periods. The method is based on an original database of spectral features taking into account seasonal variations of tree species spectra. Changes in the spectral signatures of forest classes are analyzed and new spectral–temporal features are created for the classification. Study sites are located in the Czech Republic and northwest (NW) Russia. The differences in spectral reflectance between tree species are shown as statistically significant in the sub-seasons of spring, first half of summer, and main autumn for both study sites. Most of the errors are related to the classification of deciduous species and misclassification of birch as pine (NW Russia site), pine as mixture of pine and spruce, and pine as mixture of spruce and beech (Czech site). Forest species are mapped with accuracy as high as 80% (NW Russia site) and 81% (Czech site). The classification using multitemporal multispectral data has a kappa coefficient 1.7 times higher than does that of classification using a single multispectral image and 1.3 times greater than that of the classification using single hyperspectral images. Potentially, classification accuracy can be improved by the method when applying multitemporal satellite hyperspectral data, such as in using new, near-future products EnMap and/or HyspIRI with high revisit time.","PeriodicalId":49520,"journal":{"name":"Silva Fennica","volume":"54 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An original method for tree species classification using multitemporal multispectral and hyperspectral satellite data\",\"authors\":\"O. Grigorieva, O. Brovkina, A. Saidov\",\"doi\":\"10.14214/sf.10143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes an original method for tree species classification by satellite remote sensing. The method uses multitemporal multispectral (Landsat OLI) and hyperspectral (Resurs-P) data acquired from determined vegetation periods. The method is based on an original database of spectral features taking into account seasonal variations of tree species spectra. Changes in the spectral signatures of forest classes are analyzed and new spectral–temporal features are created for the classification. Study sites are located in the Czech Republic and northwest (NW) Russia. The differences in spectral reflectance between tree species are shown as statistically significant in the sub-seasons of spring, first half of summer, and main autumn for both study sites. Most of the errors are related to the classification of deciduous species and misclassification of birch as pine (NW Russia site), pine as mixture of pine and spruce, and pine as mixture of spruce and beech (Czech site). Forest species are mapped with accuracy as high as 80% (NW Russia site) and 81% (Czech site). The classification using multitemporal multispectral data has a kappa coefficient 1.7 times higher than does that of classification using a single multispectral image and 1.3 times greater than that of the classification using single hyperspectral images. Potentially, classification accuracy can be improved by the method when applying multitemporal satellite hyperspectral data, such as in using new, near-future products EnMap and/or HyspIRI with high revisit time.\",\"PeriodicalId\":49520,\"journal\":{\"name\":\"Silva Fennica\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Silva Fennica\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.14214/sf.10143\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silva Fennica","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.14214/sf.10143","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 8

摘要

本研究提出了一种新颖的卫星遥感树种分类方法。该方法使用从确定的植被期获得的多时相多光谱(Landsat OLI)和高光谱(reres - p)数据。该方法基于原始的光谱特征数据库,考虑了树种光谱的季节变化。分析了森林分类光谱特征的变化,并为分类创建了新的光谱时间特征。研究地点位于捷克共和国和西北(西北)俄罗斯。不同树种间的光谱反射率在春季、夏季上半季和秋季主要季节的差异均有统计学意义。大部分的错误与落叶松种的分类和将桦木误分类为松(俄罗斯西北部样地)、松为松和云杉的混交种、松为云杉和山毛榉的混交种(捷克样地)有关。森林物种的定位精度分别高达80%(俄罗斯西北部)和81%(捷克)。多时相多光谱数据分类的kappa系数比单幅多光谱图像分类高1.7倍,比单幅高光谱图像分类高1.3倍。当应用多时相卫星高光谱数据时,例如使用具有高重访时间的新产品EnMap和/或HyspIRI,该方法可能会提高分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An original method for tree species classification using multitemporal multispectral and hyperspectral satellite data
This study proposes an original method for tree species classification by satellite remote sensing. The method uses multitemporal multispectral (Landsat OLI) and hyperspectral (Resurs-P) data acquired from determined vegetation periods. The method is based on an original database of spectral features taking into account seasonal variations of tree species spectra. Changes in the spectral signatures of forest classes are analyzed and new spectral–temporal features are created for the classification. Study sites are located in the Czech Republic and northwest (NW) Russia. The differences in spectral reflectance between tree species are shown as statistically significant in the sub-seasons of spring, first half of summer, and main autumn for both study sites. Most of the errors are related to the classification of deciduous species and misclassification of birch as pine (NW Russia site), pine as mixture of pine and spruce, and pine as mixture of spruce and beech (Czech site). Forest species are mapped with accuracy as high as 80% (NW Russia site) and 81% (Czech site). The classification using multitemporal multispectral data has a kappa coefficient 1.7 times higher than does that of classification using a single multispectral image and 1.3 times greater than that of the classification using single hyperspectral images. Potentially, classification accuracy can be improved by the method when applying multitemporal satellite hyperspectral data, such as in using new, near-future products EnMap and/or HyspIRI with high revisit time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Silva Fennica
Silva Fennica 农林科学-林学
CiteScore
3.50
自引率
11.10%
发文量
21
审稿时长
3 months
期刊介绍: Silva Fennica publishes significant new knowledge on forest sciences. The scope covers research on forestry and forest ecosystems. Silva Fennica aims to increase understanding on forest ecosystems, and sustainable use and conservation of forest resources. Use of forest resources includes all aspects of forestry containing biomass-based and non-timber products, economic and social factors etc.
期刊最新文献
Passion for science Effect of arginine-phosphate addition on early survival and growth of Scots pine, Norway spruce and silver birch Forest management in northern Fennoscandia: the need for solutions that mitigate conflicts during forest regeneration and increase the use of continuous cover forestry Changing climatic drivers of European spruce bark beetle outbreaks: a comparison of locations around the Northern Baltic Sea Within-site adaptation: Growth and mortality of Norway spruce, Scots pine and Silver birch seedlings in different planting positions across a soil moisture gradient
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1