基于Modelica的磁流变制动器多域统一建模及控制参数优化

Zhihua Li, Longhao Yuan, Chaoqun Nie
{"title":"基于Modelica的磁流变制动器多域统一建模及控制参数优化","authors":"Zhihua Li, Longhao Yuan, Chaoqun Nie","doi":"10.1504/IJMSI.2016.079639","DOIUrl":null,"url":null,"abstract":"In order to solve the problem of modelling, simulation and optimisation of magnetorheological brake (MR brake) which is a multi-domain coupling system, the braking performance and control parameters optimisation of MR brake were investigated under a quarter-car model. Firstly, based on Modelica/MWorks platform, using multi-domain unified modelling method, a multi-domain unified MR brake model with anti-lock braking system (ABS) was built. Then by using response surface method (RSM), the response surface function to express the relation between braking distance and three control parameters was formulated, and the optimisation problem of control parameters was solved at MWorks. Finally, according to the optimal control parameters and the structure parameters of MR brake designed by our group before, the simulation of the multi-domain unified MR brake model was done to analyse the change regularity of vehicle speed, slip ratio, braking distance, control current, braking time, etc. under the effect of controller. Results show that MR brake with optimal control parameters has a good braking performance and can meet the requirements of GB7258-2012 standard. This lays the foundation of application of MR brake in vehicles.","PeriodicalId":39035,"journal":{"name":"International Journal of Materials and Structural Integrity","volume":"10 1","pages":"81"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJMSI.2016.079639","citationCount":"0","resultStr":"{\"title\":\"Multi-domain unified modelling and control parameters optimisation of magnetorheological brake based on Modelica\",\"authors\":\"Zhihua Li, Longhao Yuan, Chaoqun Nie\",\"doi\":\"10.1504/IJMSI.2016.079639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to solve the problem of modelling, simulation and optimisation of magnetorheological brake (MR brake) which is a multi-domain coupling system, the braking performance and control parameters optimisation of MR brake were investigated under a quarter-car model. Firstly, based on Modelica/MWorks platform, using multi-domain unified modelling method, a multi-domain unified MR brake model with anti-lock braking system (ABS) was built. Then by using response surface method (RSM), the response surface function to express the relation between braking distance and three control parameters was formulated, and the optimisation problem of control parameters was solved at MWorks. Finally, according to the optimal control parameters and the structure parameters of MR brake designed by our group before, the simulation of the multi-domain unified MR brake model was done to analyse the change regularity of vehicle speed, slip ratio, braking distance, control current, braking time, etc. under the effect of controller. Results show that MR brake with optimal control parameters has a good braking performance and can meet the requirements of GB7258-2012 standard. This lays the foundation of application of MR brake in vehicles.\",\"PeriodicalId\":39035,\"journal\":{\"name\":\"International Journal of Materials and Structural Integrity\",\"volume\":\"10 1\",\"pages\":\"81\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJMSI.2016.079639\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials and Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJMSI.2016.079639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials and Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMSI.2016.079639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

为了解决磁流变制动器这一多域耦合系统的建模、仿真和优化问题,在四分之一车模型下对磁流变制动器的制动性能和控制参数优化进行了研究。首先,基于Modelica/MWorks平台,采用多域统一建模方法,建立了具有防抱死制动系统(ABS)的多域统一MR制动模型;然后利用响应面法(RSM),建立了表征制动距离与三个控制参数之间关系的响应面函数,并在MWorks上解决了控制参数的优化问题。最后,根据本课程组设计的最优控制参数和MR制动器的结构参数,对多域统一MR制动器模型进行了仿真,分析了控制器作用下车速、滑移比、制动距离、控制电流、制动时间等参数的变化规律。结果表明,采用最优控制参数的MR制动器制动性能良好,能够满足GB7258-2012标准的要求。这为磁流变制动器在车辆上的应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-domain unified modelling and control parameters optimisation of magnetorheological brake based on Modelica
In order to solve the problem of modelling, simulation and optimisation of magnetorheological brake (MR brake) which is a multi-domain coupling system, the braking performance and control parameters optimisation of MR brake were investigated under a quarter-car model. Firstly, based on Modelica/MWorks platform, using multi-domain unified modelling method, a multi-domain unified MR brake model with anti-lock braking system (ABS) was built. Then by using response surface method (RSM), the response surface function to express the relation between braking distance and three control parameters was formulated, and the optimisation problem of control parameters was solved at MWorks. Finally, according to the optimal control parameters and the structure parameters of MR brake designed by our group before, the simulation of the multi-domain unified MR brake model was done to analyse the change regularity of vehicle speed, slip ratio, braking distance, control current, braking time, etc. under the effect of controller. Results show that MR brake with optimal control parameters has a good braking performance and can meet the requirements of GB7258-2012 standard. This lays the foundation of application of MR brake in vehicles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
期刊最新文献
Compressive strength enhancement of concrete using fly ash as a partial replacement of fine aggregate and model development Flexural fatigue analysis of fibre reinforced polymer concrete composites under non-reversed loading A new simple formulation for instantaneous coil diameter of a SMA helical spring Effects of two-step heat treatment on the structure of cotton-derived activated carbon fibres Mechanics of contact interaction and deformation of main pipelines in the conditions of extreme external actions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1