超高速磨削电主轴的研制

Lu Yang, Yucan Fu, Jiu-hua Xu
{"title":"超高速磨削电主轴的研制","authors":"Lu Yang, Yucan Fu, Jiu-hua Xu","doi":"10.1504/ijat.2015.073811","DOIUrl":null,"url":null,"abstract":"This paper describes the development of an ultra-high speed grinding motorised spindle specially designed for a project aiming to implement research on mechanism and process of the ultra-high speed grinding of hard-to-cut materials at a maximum wheel speed of 450 m/s. At such high speeds, the loss power caused by air resistance should be primarily focused on as it could even exceed the real cutting power. In this study, a theoretical analysis of loss power was firstly carried out to optimise and determine the spindle rotational speed and wheel diameter. Furthermore, based on the designed motorised spindle, further work was concentrated on estimating the dynamic performance of motorised spindle such as its natural properties and balancing characteristics with finite element method. As well, theses physical properties were experimentally measured for the developed spindle. The results showed that work on the development of the motorised spindle was valid and reliable.","PeriodicalId":39039,"journal":{"name":"International Journal of Abrasive Technology","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijat.2015.073811","citationCount":"1","resultStr":"{\"title\":\"Development of an ultra-high speed grinding motorised spindle\",\"authors\":\"Lu Yang, Yucan Fu, Jiu-hua Xu\",\"doi\":\"10.1504/ijat.2015.073811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the development of an ultra-high speed grinding motorised spindle specially designed for a project aiming to implement research on mechanism and process of the ultra-high speed grinding of hard-to-cut materials at a maximum wheel speed of 450 m/s. At such high speeds, the loss power caused by air resistance should be primarily focused on as it could even exceed the real cutting power. In this study, a theoretical analysis of loss power was firstly carried out to optimise and determine the spindle rotational speed and wheel diameter. Furthermore, based on the designed motorised spindle, further work was concentrated on estimating the dynamic performance of motorised spindle such as its natural properties and balancing characteristics with finite element method. As well, theses physical properties were experimentally measured for the developed spindle. The results showed that work on the development of the motorised spindle was valid and reliable.\",\"PeriodicalId\":39039,\"journal\":{\"name\":\"International Journal of Abrasive Technology\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/ijat.2015.073811\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Abrasive Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijat.2015.073811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Abrasive Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijat.2015.073811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了一种超高速磨削电主轴的研制,该电主轴是专门为研究最大轮速450 m/s下对难切削材料进行超高速磨削的机理和工艺而设计的。在如此高的速度下,应主要关注空气阻力造成的损失功率,因为它甚至可能超过实际切割功率。本文首先对损耗功率进行了理论分析,优化确定了主轴转速和砂轮直径。在此基础上,利用有限元法对电主轴的自然特性、平衡特性等动态特性进行了估计。并对所研制的主轴进行了物理性能测试。结果表明,电主轴的研制工作是有效和可靠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of an ultra-high speed grinding motorised spindle
This paper describes the development of an ultra-high speed grinding motorised spindle specially designed for a project aiming to implement research on mechanism and process of the ultra-high speed grinding of hard-to-cut materials at a maximum wheel speed of 450 m/s. At such high speeds, the loss power caused by air resistance should be primarily focused on as it could even exceed the real cutting power. In this study, a theoretical analysis of loss power was firstly carried out to optimise and determine the spindle rotational speed and wheel diameter. Furthermore, based on the designed motorised spindle, further work was concentrated on estimating the dynamic performance of motorised spindle such as its natural properties and balancing characteristics with finite element method. As well, theses physical properties were experimentally measured for the developed spindle. The results showed that work on the development of the motorised spindle was valid and reliable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Abrasive Technology
International Journal of Abrasive Technology Engineering-Industrial and Manufacturing Engineering
CiteScore
0.90
自引率
0.00%
发文量
13
期刊最新文献
A modeling study of grinding force for axial feed machining of Si3N4-diamond grinding wheel endface based on specific chip energy Experimental study on plunge-cut internal cylindrical electrolysis grinding processing of bearing ring Experimental study on the processing of sapphire with a free-abrasive assisted fixed-abrasive lapping plate Investigation on Workpiece Microstructure and Wheel Performance on Grinding Titanium Metal Matrix Composites Modelling of Material Removal in Unidirectional Abrasive Flow Machining process using Classical Indentation Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1