球端磁流变精整过程粗糙度降低的瞬态行为建模

F. Iqbal, Z. Alam, S. Jha
{"title":"球端磁流变精整过程粗糙度降低的瞬态行为建模","authors":"F. Iqbal, Z. Alam, S. Jha","doi":"10.1504/IJAT.2020.10034975","DOIUrl":null,"url":null,"abstract":"Ball end magnetorheological finishing (BEMRF) process provides nano level of surface finish for materials which are magnetic as well as non-magnetic in nature. The available literature on this process has been vastly limited to establishing its finishing capabilities on materials of different nature. This research work deals with theoretical investigations into surface roughness reduction in BEMRF process, performance of machining parameters during long time periods and providing their representation in mathematical terms. Starting with the mechanism of abrasive wear in BEMRF process, this work advances to find out prolonged effect of abrasive rubbing on a ferromagnetic workpiece surface. The study finds out a phenomenon termed as transient roughness reduction in which the material removal by abrasive wear in BEMRF process is diminished with time and a particular combination of machining parameters and fluid composition reduce roughness only up to a critical value, beyond which no further reduction is achieved. A mathematical model is developed to depict this transient roughness reduction phenomenon, the model is then experimentally verified and the close proximity of the experimental results with the theoretical ones validates the model and the transient roughness reduction phenomenon in BEMRF process.","PeriodicalId":39039,"journal":{"name":"International Journal of Abrasive Technology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modelling of transient behaviour of roughness reduction in ball end magnetorheological finishing process\",\"authors\":\"F. Iqbal, Z. Alam, S. Jha\",\"doi\":\"10.1504/IJAT.2020.10034975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ball end magnetorheological finishing (BEMRF) process provides nano level of surface finish for materials which are magnetic as well as non-magnetic in nature. The available literature on this process has been vastly limited to establishing its finishing capabilities on materials of different nature. This research work deals with theoretical investigations into surface roughness reduction in BEMRF process, performance of machining parameters during long time periods and providing their representation in mathematical terms. Starting with the mechanism of abrasive wear in BEMRF process, this work advances to find out prolonged effect of abrasive rubbing on a ferromagnetic workpiece surface. The study finds out a phenomenon termed as transient roughness reduction in which the material removal by abrasive wear in BEMRF process is diminished with time and a particular combination of machining parameters and fluid composition reduce roughness only up to a critical value, beyond which no further reduction is achieved. A mathematical model is developed to depict this transient roughness reduction phenomenon, the model is then experimentally verified and the close proximity of the experimental results with the theoretical ones validates the model and the transient roughness reduction phenomenon in BEMRF process.\",\"PeriodicalId\":39039,\"journal\":{\"name\":\"International Journal of Abrasive Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Abrasive Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJAT.2020.10034975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Abrasive Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAT.2020.10034975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

球端磁流变表面处理(BEMRF)工艺为磁性和非磁性材料提供纳米级表面处理。关于这一过程的现有文献已经大大限制了它在不同性质材料上的整理能力。本研究从理论上研究了BEMRF加工过程中表面粗糙度的降低,长时间内加工参数的性能,并提供了它们的数学表达式。本文从磨料磨损机理出发,探讨了磨料对铁磁工件表面的持久摩擦效应。研究发现了一种被称为瞬态粗糙度降低的现象,在BEMRF过程中,磨料磨损对材料的去除随着时间的推移而减少,加工参数和流体成分的特定组合只会使粗糙度降低到一个临界值,超过这个临界值就不会进一步降低。建立了描述该瞬态粗糙度减小现象的数学模型,并对该模型进行了实验验证,实验结果与理论结果的接近性验证了该模型和瞬态粗糙度减小现象的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling of transient behaviour of roughness reduction in ball end magnetorheological finishing process
Ball end magnetorheological finishing (BEMRF) process provides nano level of surface finish for materials which are magnetic as well as non-magnetic in nature. The available literature on this process has been vastly limited to establishing its finishing capabilities on materials of different nature. This research work deals with theoretical investigations into surface roughness reduction in BEMRF process, performance of machining parameters during long time periods and providing their representation in mathematical terms. Starting with the mechanism of abrasive wear in BEMRF process, this work advances to find out prolonged effect of abrasive rubbing on a ferromagnetic workpiece surface. The study finds out a phenomenon termed as transient roughness reduction in which the material removal by abrasive wear in BEMRF process is diminished with time and a particular combination of machining parameters and fluid composition reduce roughness only up to a critical value, beyond which no further reduction is achieved. A mathematical model is developed to depict this transient roughness reduction phenomenon, the model is then experimentally verified and the close proximity of the experimental results with the theoretical ones validates the model and the transient roughness reduction phenomenon in BEMRF process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Abrasive Technology
International Journal of Abrasive Technology Engineering-Industrial and Manufacturing Engineering
CiteScore
0.90
自引率
0.00%
发文量
13
期刊最新文献
A modeling study of grinding force for axial feed machining of Si3N4-diamond grinding wheel endface based on specific chip energy Experimental study on plunge-cut internal cylindrical electrolysis grinding processing of bearing ring Experimental study on the processing of sapphire with a free-abrasive assisted fixed-abrasive lapping plate Investigation on Workpiece Microstructure and Wheel Performance on Grinding Titanium Metal Matrix Composites Modelling of Material Removal in Unidirectional Abrasive Flow Machining process using Classical Indentation Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1