{"title":"基于斥力场法的楔形纳米压痕多尺度模拟","authors":"Y. Li, Y. Ni","doi":"10.1515/ijnsns-2013-0117","DOIUrl":null,"url":null,"abstract":"Abstract A new method is proposed to perform the multiscale simulation of nanoindentation with wedge indenter. We designed a potential field to model the wedge indenter based on the repulsive force-field approach which was used to model round indenters. A smooth curve representing the indenter tip is used to avoid the singularity of an ideal wedge indenter. Simulation with our approach correctly shows essential features of wedge nanoindentation. The load responses during retraction is confirmed by elastic model based on the Oliver–Pharr approach. Significant indentation size effect that the contact hardness decreases with the increase of contact depth is compared with existing models. The atomic configurations of the film shows that perfect dislocations nucleate under the indenter with Burges vectors perpendicular to the indentation direction. The strain distribution under the indenter shows that the length of plastic zone in the indentation direction is much larger than the contact width.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijnsns-2013-0117","citationCount":"0","resultStr":"{\"title\":\"Multiscale Simulation of Wedge Nanoindentation Based on the Repulsive Force-field Approach\",\"authors\":\"Y. Li, Y. Ni\",\"doi\":\"10.1515/ijnsns-2013-0117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A new method is proposed to perform the multiscale simulation of nanoindentation with wedge indenter. We designed a potential field to model the wedge indenter based on the repulsive force-field approach which was used to model round indenters. A smooth curve representing the indenter tip is used to avoid the singularity of an ideal wedge indenter. Simulation with our approach correctly shows essential features of wedge nanoindentation. The load responses during retraction is confirmed by elastic model based on the Oliver–Pharr approach. Significant indentation size effect that the contact hardness decreases with the increase of contact depth is compared with existing models. The atomic configurations of the film shows that perfect dislocations nucleate under the indenter with Burges vectors perpendicular to the indentation direction. The strain distribution under the indenter shows that the length of plastic zone in the indentation direction is much larger than the contact width.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ijnsns-2013-0117\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2013-0117\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2013-0117","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Multiscale Simulation of Wedge Nanoindentation Based on the Repulsive Force-field Approach
Abstract A new method is proposed to perform the multiscale simulation of nanoindentation with wedge indenter. We designed a potential field to model the wedge indenter based on the repulsive force-field approach which was used to model round indenters. A smooth curve representing the indenter tip is used to avoid the singularity of an ideal wedge indenter. Simulation with our approach correctly shows essential features of wedge nanoindentation. The load responses during retraction is confirmed by elastic model based on the Oliver–Pharr approach. Significant indentation size effect that the contact hardness decreases with the increase of contact depth is compared with existing models. The atomic configurations of the film shows that perfect dislocations nucleate under the indenter with Burges vectors perpendicular to the indentation direction. The strain distribution under the indenter shows that the length of plastic zone in the indentation direction is much larger than the contact width.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.