基于克隆选择算法的人工神经网络气动接触器CO2吸收建模与优化

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2015-04-01 DOI:10.1515/ijnsns-2014-0052
P. Cozma, E. Drăgoi, I. Mămăligă, S. Curteanu, W. Wukovits, A. Friedl, M. Gavrilescu
{"title":"基于克隆选择算法的人工神经网络气动接触器CO2吸收建模与优化","authors":"P. Cozma, E. Drăgoi, I. Mămăligă, S. Curteanu, W. Wukovits, A. Friedl, M. Gavrilescu","doi":"10.1515/ijnsns-2014-0052","DOIUrl":null,"url":null,"abstract":"Abstract Our research focuses on the application of airlift contactors (ALRs) for the decontamination of CO2-containing gas streams, such as biogas. To assess the performance of ALRs during CO2 absorption, a complex experimental programme was applied in a laboratory-scale rectangular pneumatic contactor, able to operate either as a bubble column or as an airlift reactor. Using the experimental data, a model based on artificial neural network (ANN) was developed. The algorithm for determining the optimal neural network model and for reactor optimization is clonal selection (CS), belonging to artificial immune system class, which is a new computational intelligence paradigm based on the principles of the vertebrate immune system. To improve its capabilities and the probability for highly suitable models and input combinations, addressing maximum efficiency, a Back-Propagation (BK) algorithm – a supervised learning method based on the delta rule – is used as a local search procedure. It is applied in a greedy manner for the best antibody found in each generation. Since the highest affinity antibodies are cloned in the next generation, the effect of BK on the suitability of the individuals propagates into a large proportion of the population. In parallel with the BK hybridization of the basic CS–ANN combination, a series of normalization procedures are included for improving the overall results provided by the new algorithm called nCS-MBK (normalized Clonal Selection-Multilayer Perceptron Neural Network and Back-Propagation algorithm). The optimization allowed for achieving the optimal reactor configuration, which leads to a maximum amount of CO2 dissolved in water.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijnsns-2014-0052","citationCount":"4","resultStr":"{\"title\":\"Modelling and Optimization of CO2 Absorption in Pneumatic Contactors Using Artificial Neural Networks Developed with Clonal Selection-Based Algorithm\",\"authors\":\"P. Cozma, E. Drăgoi, I. Mămăligă, S. Curteanu, W. Wukovits, A. Friedl, M. Gavrilescu\",\"doi\":\"10.1515/ijnsns-2014-0052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Our research focuses on the application of airlift contactors (ALRs) for the decontamination of CO2-containing gas streams, such as biogas. To assess the performance of ALRs during CO2 absorption, a complex experimental programme was applied in a laboratory-scale rectangular pneumatic contactor, able to operate either as a bubble column or as an airlift reactor. Using the experimental data, a model based on artificial neural network (ANN) was developed. The algorithm for determining the optimal neural network model and for reactor optimization is clonal selection (CS), belonging to artificial immune system class, which is a new computational intelligence paradigm based on the principles of the vertebrate immune system. To improve its capabilities and the probability for highly suitable models and input combinations, addressing maximum efficiency, a Back-Propagation (BK) algorithm – a supervised learning method based on the delta rule – is used as a local search procedure. It is applied in a greedy manner for the best antibody found in each generation. Since the highest affinity antibodies are cloned in the next generation, the effect of BK on the suitability of the individuals propagates into a large proportion of the population. In parallel with the BK hybridization of the basic CS–ANN combination, a series of normalization procedures are included for improving the overall results provided by the new algorithm called nCS-MBK (normalized Clonal Selection-Multilayer Perceptron Neural Network and Back-Propagation algorithm). The optimization allowed for achieving the optimal reactor configuration, which leads to a maximum amount of CO2 dissolved in water.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2015-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ijnsns-2014-0052\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2014-0052\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2014-0052","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

摘要:本文主要研究了气举式接触器(ALRs)在含二氧化碳气流(如沼气)净化中的应用。为了评估ALRs在二氧化碳吸收过程中的性能,在实验室规模的矩形气动接触器中应用了一个复杂的实验程序,该接触器既可以作为气泡塔运行,也可以作为气升反应器运行。利用实验数据,建立了基于人工神经网络(ANN)的模型。确定最优神经网络模型和优化反应器的算法是克隆选择算法(CS),属于人工免疫系统类,是一种基于脊椎动物免疫系统原理的新型计算智能范式。为了提高其能力和概率,高度适合的模型和输入组合,解决最大效率,反向传播(BK)算法-一种基于增量规则的监督学习方法-被用作局部搜索过程。它以贪婪的方式应用于每一代发现的最佳抗体。由于亲和性最高的抗体是在下一代克隆的,因此BK对个体适应性的影响在种群中传播的比例很大。与基本CS-ANN组合的BK杂交并行,包括一系列归一化过程,以改善称为nCS-MBK(规范化克隆选择-多层感知器神经网络和反向传播算法)的新算法提供的整体结果。优化允许实现最佳反应器配置,这导致最大数量的二氧化碳溶解在水中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling and Optimization of CO2 Absorption in Pneumatic Contactors Using Artificial Neural Networks Developed with Clonal Selection-Based Algorithm
Abstract Our research focuses on the application of airlift contactors (ALRs) for the decontamination of CO2-containing gas streams, such as biogas. To assess the performance of ALRs during CO2 absorption, a complex experimental programme was applied in a laboratory-scale rectangular pneumatic contactor, able to operate either as a bubble column or as an airlift reactor. Using the experimental data, a model based on artificial neural network (ANN) was developed. The algorithm for determining the optimal neural network model and for reactor optimization is clonal selection (CS), belonging to artificial immune system class, which is a new computational intelligence paradigm based on the principles of the vertebrate immune system. To improve its capabilities and the probability for highly suitable models and input combinations, addressing maximum efficiency, a Back-Propagation (BK) algorithm – a supervised learning method based on the delta rule – is used as a local search procedure. It is applied in a greedy manner for the best antibody found in each generation. Since the highest affinity antibodies are cloned in the next generation, the effect of BK on the suitability of the individuals propagates into a large proportion of the population. In parallel with the BK hybridization of the basic CS–ANN combination, a series of normalization procedures are included for improving the overall results provided by the new algorithm called nCS-MBK (normalized Clonal Selection-Multilayer Perceptron Neural Network and Back-Propagation algorithm). The optimization allowed for achieving the optimal reactor configuration, which leads to a maximum amount of CO2 dissolved in water.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1