{"title":"纳米颗粒药物体外释放研究方法的比较评价","authors":"S. K. Paswan, T. Saini","doi":"10.14227/dt280421p30","DOIUrl":null,"url":null,"abstract":"The aim of the present study was to experimentally compare the attributes, drawbacks, and limitations of the most commonly employed in vitro drug release test methods for nanoparticle systems and to explore the possibility of one method being adopted as a standard for quality control of nanoparticle-based products. Three in vitro drug release test methods, i.e., direct addition, dialysis bag, and low-pressure ultrafiltration, were employed for evaluation of drug release from tamoxifen-loaded poly(lactic-co-glycolic acid) nanoparticles. Relevant operational characteristics of each test method were compared. Drug release data were fitted in different release kinetics models, i.e., zero order, first order, Higuchi, Hixson-Crowell, and Korsmeyer-Peppas. The coefficient of determination (R2), release rate constant (k), and release exponent (n) values were calculated. The direct addition method showed rapid initial drug release, whereas a slow release rate was observed in the dialysis bag method. Results of the low-pressure ultrafiltration method were consistent with the direct addition method and various operational characteristics were more realistic than the other two methods. Overall, the findings support that low-pressure ultrafiltration can be considered as a standard regulatory test method for in vitro release of nanoparticle-based formulations.","PeriodicalId":11380,"journal":{"name":"Dissolution Technologies","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparative Evaluation of In Vitro Drug Release Methods Employed for Nanoparticle Drug Release Studies\",\"authors\":\"S. K. Paswan, T. Saini\",\"doi\":\"10.14227/dt280421p30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the present study was to experimentally compare the attributes, drawbacks, and limitations of the most commonly employed in vitro drug release test methods for nanoparticle systems and to explore the possibility of one method being adopted as a standard for quality control of nanoparticle-based products. Three in vitro drug release test methods, i.e., direct addition, dialysis bag, and low-pressure ultrafiltration, were employed for evaluation of drug release from tamoxifen-loaded poly(lactic-co-glycolic acid) nanoparticles. Relevant operational characteristics of each test method were compared. Drug release data were fitted in different release kinetics models, i.e., zero order, first order, Higuchi, Hixson-Crowell, and Korsmeyer-Peppas. The coefficient of determination (R2), release rate constant (k), and release exponent (n) values were calculated. The direct addition method showed rapid initial drug release, whereas a slow release rate was observed in the dialysis bag method. Results of the low-pressure ultrafiltration method were consistent with the direct addition method and various operational characteristics were more realistic than the other two methods. Overall, the findings support that low-pressure ultrafiltration can be considered as a standard regulatory test method for in vitro release of nanoparticle-based formulations.\",\"PeriodicalId\":11380,\"journal\":{\"name\":\"Dissolution Technologies\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dissolution Technologies\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.14227/dt280421p30\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dissolution Technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14227/dt280421p30","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Comparative Evaluation of In Vitro Drug Release Methods Employed for Nanoparticle Drug Release Studies
The aim of the present study was to experimentally compare the attributes, drawbacks, and limitations of the most commonly employed in vitro drug release test methods for nanoparticle systems and to explore the possibility of one method being adopted as a standard for quality control of nanoparticle-based products. Three in vitro drug release test methods, i.e., direct addition, dialysis bag, and low-pressure ultrafiltration, were employed for evaluation of drug release from tamoxifen-loaded poly(lactic-co-glycolic acid) nanoparticles. Relevant operational characteristics of each test method were compared. Drug release data were fitted in different release kinetics models, i.e., zero order, first order, Higuchi, Hixson-Crowell, and Korsmeyer-Peppas. The coefficient of determination (R2), release rate constant (k), and release exponent (n) values were calculated. The direct addition method showed rapid initial drug release, whereas a slow release rate was observed in the dialysis bag method. Results of the low-pressure ultrafiltration method were consistent with the direct addition method and various operational characteristics were more realistic than the other two methods. Overall, the findings support that low-pressure ultrafiltration can be considered as a standard regulatory test method for in vitro release of nanoparticle-based formulations.
期刊介绍:
Dissolution Technologies is a peer reviewed quarterly
publication reporting ongoing, useful information on
dissolution testing of pharmaceuticals. It provides an
international forum for dissolution analysts to receive
and exchange information on various dissolution topics.
Dissolution Technologies welcomes submissions related
to dissolution, in vitro release, and disintegration testing.
These topics should be the major focus of the article.
Do not submit articles where the focus is formulation
development with dissolution testing as one of many
tests.