表面活性剂对他莫昔芬溶出行为的影响

IF 1 4区 医学 Q4 PHARMACOLOGY & PHARMACY Dissolution Technologies Pub Date : 2021-01-01 DOI:10.14227/DT280221P6
T. Incecayir, Seval Olgac, D. Usta, Z. Teksin
{"title":"表面活性剂对他莫昔芬溶出行为的影响","authors":"T. Incecayir, Seval Olgac, D. Usta, Z. Teksin","doi":"10.14227/DT280221P6","DOIUrl":null,"url":null,"abstract":"Because drug-surfactant interactions are specific, careful choice of surfactant media is required to develop dissolution tests for Biopharmaceutics Classification System (BCS) Class II drugs. The purpose of this study was to investigate the effects of cationic hexadecyltrimethylammonium bromide (CTAB) and nonionic surfactants (polysorbate 80) on the dissolution of bioequivalent immediate-release formulations of a BCS Class II anticancer drug, tamoxifen citrate (TMX), and to identify the most suitable surfactant medium reflecting the formulation differences and in vivo dissolution of the drug. Dissolution behaviors of the reference and test products were studied using USP apparatus II at pH 1.2, 4.5, and 6.8 with and without surfactant. At pH 6.8, the effects of 0.5% (w/v) CTAB and 0.5% (w/v) polysorbate 80 on dissolution of the formulations were much more pronounced compared to pH 1.2. Based on model-dependent and modelindependent approaches, test products were found to be different from the reference in all surfactant media. Overall, none of the surfactant media reflected the bioequivalence of test products to the reference; however, polysorbate 80 may provide a discriminative test for certain formulation changes, and it may be physiologically meaningful to mimic in vivo solubilization and sink conditions due to continuous intestinal absorption of TMX.","PeriodicalId":11380,"journal":{"name":"Dissolution Technologies","volume":"28 1","pages":"6-15"},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Role of Surfactants on Dissolution Behavior of Tamoxifen\",\"authors\":\"T. Incecayir, Seval Olgac, D. Usta, Z. Teksin\",\"doi\":\"10.14227/DT280221P6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because drug-surfactant interactions are specific, careful choice of surfactant media is required to develop dissolution tests for Biopharmaceutics Classification System (BCS) Class II drugs. The purpose of this study was to investigate the effects of cationic hexadecyltrimethylammonium bromide (CTAB) and nonionic surfactants (polysorbate 80) on the dissolution of bioequivalent immediate-release formulations of a BCS Class II anticancer drug, tamoxifen citrate (TMX), and to identify the most suitable surfactant medium reflecting the formulation differences and in vivo dissolution of the drug. Dissolution behaviors of the reference and test products were studied using USP apparatus II at pH 1.2, 4.5, and 6.8 with and without surfactant. At pH 6.8, the effects of 0.5% (w/v) CTAB and 0.5% (w/v) polysorbate 80 on dissolution of the formulations were much more pronounced compared to pH 1.2. Based on model-dependent and modelindependent approaches, test products were found to be different from the reference in all surfactant media. Overall, none of the surfactant media reflected the bioequivalence of test products to the reference; however, polysorbate 80 may provide a discriminative test for certain formulation changes, and it may be physiologically meaningful to mimic in vivo solubilization and sink conditions due to continuous intestinal absorption of TMX.\",\"PeriodicalId\":11380,\"journal\":{\"name\":\"Dissolution Technologies\",\"volume\":\"28 1\",\"pages\":\"6-15\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dissolution Technologies\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.14227/DT280221P6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dissolution Technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14227/DT280221P6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 1

摘要

由于药物与表面活性剂的相互作用具有特异性,因此在开展生物制药分类系统(BCS) II类药物溶出度试验时,需要仔细选择表面活性剂介质。研究阳离子十六烷基三甲基溴化铵(CTAB)和非离子表面活性剂(聚山梨酸酯80)对BCSⅱ类抗癌药物柠檬酸他莫昔芬(TMX)生物等效速释制剂溶出度的影响,并确定反映制剂差异和药物体内溶出度的最合适表面活性剂介质。用USP仪器II研究了参比品和被试品在pH 1.2、4.5和6.8时的溶出行为。在pH为6.8时,0.5% (w/v) CTAB和0.5% (w/v)聚山梨酸酯80对配方溶出的影响比pH为1.2时更为明显。基于依赖模型和不依赖模型的方法,发现在所有表面活性剂介质中,测试产品与参考产品不同。总体而言,没有一种表面活性剂介质反映了被试产品与参比物的生物等效性;然而,聚山梨酯80可能为某些配方变化提供了判别性测试,并且由于TMX的持续肠道吸收,模拟体内增溶和沉淀条件可能具有生理学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Role of Surfactants on Dissolution Behavior of Tamoxifen
Because drug-surfactant interactions are specific, careful choice of surfactant media is required to develop dissolution tests for Biopharmaceutics Classification System (BCS) Class II drugs. The purpose of this study was to investigate the effects of cationic hexadecyltrimethylammonium bromide (CTAB) and nonionic surfactants (polysorbate 80) on the dissolution of bioequivalent immediate-release formulations of a BCS Class II anticancer drug, tamoxifen citrate (TMX), and to identify the most suitable surfactant medium reflecting the formulation differences and in vivo dissolution of the drug. Dissolution behaviors of the reference and test products were studied using USP apparatus II at pH 1.2, 4.5, and 6.8 with and without surfactant. At pH 6.8, the effects of 0.5% (w/v) CTAB and 0.5% (w/v) polysorbate 80 on dissolution of the formulations were much more pronounced compared to pH 1.2. Based on model-dependent and modelindependent approaches, test products were found to be different from the reference in all surfactant media. Overall, none of the surfactant media reflected the bioequivalence of test products to the reference; however, polysorbate 80 may provide a discriminative test for certain formulation changes, and it may be physiologically meaningful to mimic in vivo solubilization and sink conditions due to continuous intestinal absorption of TMX.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dissolution Technologies
Dissolution Technologies 医学-药学
CiteScore
1.20
自引率
33.30%
发文量
14
审稿时长
3 months
期刊介绍: Dissolution Technologies is a peer reviewed quarterly publication reporting ongoing, useful information on dissolution testing of pharmaceuticals. It provides an international forum for dissolution analysts to receive and exchange information on various dissolution topics. Dissolution Technologies welcomes submissions related to dissolution, in vitro release, and disintegration testing. These topics should be the major focus of the article. Do not submit articles where the focus is formulation development with dissolution testing as one of many tests.
期刊最新文献
Steady-state burning plasma: a new stage in the development of magnetic confinement fusion energy. Investigating the Influence of HPMC K4M and Eudragit L 100-55 on Guanfacine-Loaded Extended-Release Tablets Questions and Answers February 2023 Effect of Mannitol Particle Size on Melatonin Dissolution and Tablet Properties using a Quality by Design Framework Physicochemical Quality and In Vitro Bioequivalence of Amoxicillin Capsules Marketed in Burkina Faso, Africa
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1