{"title":"表面活性剂对他莫昔芬溶出行为的影响","authors":"T. Incecayir, Seval Olgac, D. Usta, Z. Teksin","doi":"10.14227/DT280221P6","DOIUrl":null,"url":null,"abstract":"Because drug-surfactant interactions are specific, careful choice of surfactant media is required to develop dissolution tests for Biopharmaceutics Classification System (BCS) Class II drugs. The purpose of this study was to investigate the effects of cationic hexadecyltrimethylammonium bromide (CTAB) and nonionic surfactants (polysorbate 80) on the dissolution of bioequivalent immediate-release formulations of a BCS Class II anticancer drug, tamoxifen citrate (TMX), and to identify the most suitable surfactant medium reflecting the formulation differences and in vivo dissolution of the drug. Dissolution behaviors of the reference and test products were studied using USP apparatus II at pH 1.2, 4.5, and 6.8 with and without surfactant. At pH 6.8, the effects of 0.5% (w/v) CTAB and 0.5% (w/v) polysorbate 80 on dissolution of the formulations were much more pronounced compared to pH 1.2. Based on model-dependent and modelindependent approaches, test products were found to be different from the reference in all surfactant media. Overall, none of the surfactant media reflected the bioequivalence of test products to the reference; however, polysorbate 80 may provide a discriminative test for certain formulation changes, and it may be physiologically meaningful to mimic in vivo solubilization and sink conditions due to continuous intestinal absorption of TMX.","PeriodicalId":11380,"journal":{"name":"Dissolution Technologies","volume":"28 1","pages":"6-15"},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Role of Surfactants on Dissolution Behavior of Tamoxifen\",\"authors\":\"T. Incecayir, Seval Olgac, D. Usta, Z. Teksin\",\"doi\":\"10.14227/DT280221P6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because drug-surfactant interactions are specific, careful choice of surfactant media is required to develop dissolution tests for Biopharmaceutics Classification System (BCS) Class II drugs. The purpose of this study was to investigate the effects of cationic hexadecyltrimethylammonium bromide (CTAB) and nonionic surfactants (polysorbate 80) on the dissolution of bioequivalent immediate-release formulations of a BCS Class II anticancer drug, tamoxifen citrate (TMX), and to identify the most suitable surfactant medium reflecting the formulation differences and in vivo dissolution of the drug. Dissolution behaviors of the reference and test products were studied using USP apparatus II at pH 1.2, 4.5, and 6.8 with and without surfactant. At pH 6.8, the effects of 0.5% (w/v) CTAB and 0.5% (w/v) polysorbate 80 on dissolution of the formulations were much more pronounced compared to pH 1.2. Based on model-dependent and modelindependent approaches, test products were found to be different from the reference in all surfactant media. Overall, none of the surfactant media reflected the bioequivalence of test products to the reference; however, polysorbate 80 may provide a discriminative test for certain formulation changes, and it may be physiologically meaningful to mimic in vivo solubilization and sink conditions due to continuous intestinal absorption of TMX.\",\"PeriodicalId\":11380,\"journal\":{\"name\":\"Dissolution Technologies\",\"volume\":\"28 1\",\"pages\":\"6-15\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dissolution Technologies\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.14227/DT280221P6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dissolution Technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14227/DT280221P6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Role of Surfactants on Dissolution Behavior of Tamoxifen
Because drug-surfactant interactions are specific, careful choice of surfactant media is required to develop dissolution tests for Biopharmaceutics Classification System (BCS) Class II drugs. The purpose of this study was to investigate the effects of cationic hexadecyltrimethylammonium bromide (CTAB) and nonionic surfactants (polysorbate 80) on the dissolution of bioequivalent immediate-release formulations of a BCS Class II anticancer drug, tamoxifen citrate (TMX), and to identify the most suitable surfactant medium reflecting the formulation differences and in vivo dissolution of the drug. Dissolution behaviors of the reference and test products were studied using USP apparatus II at pH 1.2, 4.5, and 6.8 with and without surfactant. At pH 6.8, the effects of 0.5% (w/v) CTAB and 0.5% (w/v) polysorbate 80 on dissolution of the formulations were much more pronounced compared to pH 1.2. Based on model-dependent and modelindependent approaches, test products were found to be different from the reference in all surfactant media. Overall, none of the surfactant media reflected the bioequivalence of test products to the reference; however, polysorbate 80 may provide a discriminative test for certain formulation changes, and it may be physiologically meaningful to mimic in vivo solubilization and sink conditions due to continuous intestinal absorption of TMX.
期刊介绍:
Dissolution Technologies is a peer reviewed quarterly
publication reporting ongoing, useful information on
dissolution testing of pharmaceuticals. It provides an
international forum for dissolution analysts to receive
and exchange information on various dissolution topics.
Dissolution Technologies welcomes submissions related
to dissolution, in vitro release, and disintegration testing.
These topics should be the major focus of the article.
Do not submit articles where the focus is formulation
development with dissolution testing as one of many
tests.