{"title":"基于模糊逻辑的自主地面车辆鲁棒纵向滑模控制器设计","authors":"P. Hu, Jinghua Guo, Linhui Li, Rong-ben Wang","doi":"10.1504/IJVAS.2013.056619","DOIUrl":null,"url":null,"abstract":"This paper describes the development of a robust longitudinal controller for autonomous ground vehicle with inherent unknown nonlinearities and parametric uncertainties. The longitudinal controller is designed using Sliding-Mode Control (SMC) strategy based on fuzzy logic, which works through switching between the throttle actuator and brake actuator according to a predetermined criterion. The proposed longitudinal controller not only eliminates the chattering phenomenon in the Sliding-Mode Control (SMC) but also copes with the system uncertainties and external disturbances. Additionally, the convergence of closed-loop longitudinal control system is proved by the Lyapunov stability theory. Finally, simulation and experimental results indicate the strong robustness and commendable tracking performance of proposed controller.","PeriodicalId":39322,"journal":{"name":"International Journal of Vehicle Autonomous Systems","volume":"35 1","pages":"368"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJVAS.2013.056619","citationCount":"13","resultStr":"{\"title\":\"A robust longitudinal sliding-mode controller design for autonomous ground vehicle based on fuzzy logic\",\"authors\":\"P. Hu, Jinghua Guo, Linhui Li, Rong-ben Wang\",\"doi\":\"10.1504/IJVAS.2013.056619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the development of a robust longitudinal controller for autonomous ground vehicle with inherent unknown nonlinearities and parametric uncertainties. The longitudinal controller is designed using Sliding-Mode Control (SMC) strategy based on fuzzy logic, which works through switching between the throttle actuator and brake actuator according to a predetermined criterion. The proposed longitudinal controller not only eliminates the chattering phenomenon in the Sliding-Mode Control (SMC) but also copes with the system uncertainties and external disturbances. Additionally, the convergence of closed-loop longitudinal control system is proved by the Lyapunov stability theory. Finally, simulation and experimental results indicate the strong robustness and commendable tracking performance of proposed controller.\",\"PeriodicalId\":39322,\"journal\":{\"name\":\"International Journal of Vehicle Autonomous Systems\",\"volume\":\"35 1\",\"pages\":\"368\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJVAS.2013.056619\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Autonomous Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJVAS.2013.056619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Autonomous Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJVAS.2013.056619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
A robust longitudinal sliding-mode controller design for autonomous ground vehicle based on fuzzy logic
This paper describes the development of a robust longitudinal controller for autonomous ground vehicle with inherent unknown nonlinearities and parametric uncertainties. The longitudinal controller is designed using Sliding-Mode Control (SMC) strategy based on fuzzy logic, which works through switching between the throttle actuator and brake actuator according to a predetermined criterion. The proposed longitudinal controller not only eliminates the chattering phenomenon in the Sliding-Mode Control (SMC) but also copes with the system uncertainties and external disturbances. Additionally, the convergence of closed-loop longitudinal control system is proved by the Lyapunov stability theory. Finally, simulation and experimental results indicate the strong robustness and commendable tracking performance of proposed controller.