基于elm的永磁同步电机无传感器速度控制

Vikash Kumar, P. Gaur, A. Mittal, Bhim Singh
{"title":"基于elm的永磁同步电机无传感器速度控制","authors":"Vikash Kumar, P. Gaur, A. Mittal, Bhim Singh","doi":"10.1504/IJVAS.2013.053779","DOIUrl":null,"url":null,"abstract":"This paper deals with Extreme Learning Machine (ELM) based sensorless speed estimation and speed control of Permanent Magnet Synchronous Machines (PMSMs). ELM, first proposed by G.B. Huang as a new class of learning algorithm for Single-Hidden Layer Feedforward Neural Networks (SLFNs), is extremely fast and accurate, and has better generalisation performance than the traditional gradient-based training methods. To implement Field-Oriented Control (FOC) in PMSMs, the stator magnetic field is always kept 90 degrees ahead of the rotor. This requires rotor position information all the time. This information is accurately obtained with an ELM-based observer without the position sensor for PMSMs, and hence, the cost of the system is reduced, while the problems associated with the sensors are minimised.","PeriodicalId":39322,"journal":{"name":"International Journal of Vehicle Autonomous Systems","volume":"32 1","pages":"190"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJVAS.2013.053779","citationCount":"1","resultStr":"{\"title\":\"ELM-based sensorless speed control of permanent magnet synchronous machine\",\"authors\":\"Vikash Kumar, P. Gaur, A. Mittal, Bhim Singh\",\"doi\":\"10.1504/IJVAS.2013.053779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with Extreme Learning Machine (ELM) based sensorless speed estimation and speed control of Permanent Magnet Synchronous Machines (PMSMs). ELM, first proposed by G.B. Huang as a new class of learning algorithm for Single-Hidden Layer Feedforward Neural Networks (SLFNs), is extremely fast and accurate, and has better generalisation performance than the traditional gradient-based training methods. To implement Field-Oriented Control (FOC) in PMSMs, the stator magnetic field is always kept 90 degrees ahead of the rotor. This requires rotor position information all the time. This information is accurately obtained with an ELM-based observer without the position sensor for PMSMs, and hence, the cost of the system is reduced, while the problems associated with the sensors are minimised.\",\"PeriodicalId\":39322,\"journal\":{\"name\":\"International Journal of Vehicle Autonomous Systems\",\"volume\":\"32 1\",\"pages\":\"190\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJVAS.2013.053779\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Autonomous Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJVAS.2013.053779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Autonomous Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJVAS.2013.053779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

研究了基于极限学习机(ELM)的永磁同步电机无传感器速度估计和速度控制。ELM是由G.B. Huang首先提出的一类新的单隐层前馈神经网络(SLFNs)学习算法,它具有极高的速度和准确性,并且比传统的基于梯度的训练方法具有更好的泛化性能。为了在永磁同步电机中实现场定向控制(FOC),定子磁场始终保持在转子前方90度。这需要转子位置信息的所有时间。该信息可以通过基于elm的观测器准确获得,而不需要pmms的位置传感器,因此,降低了系统的成本,同时最小化了与传感器相关的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ELM-based sensorless speed control of permanent magnet synchronous machine
This paper deals with Extreme Learning Machine (ELM) based sensorless speed estimation and speed control of Permanent Magnet Synchronous Machines (PMSMs). ELM, first proposed by G.B. Huang as a new class of learning algorithm for Single-Hidden Layer Feedforward Neural Networks (SLFNs), is extremely fast and accurate, and has better generalisation performance than the traditional gradient-based training methods. To implement Field-Oriented Control (FOC) in PMSMs, the stator magnetic field is always kept 90 degrees ahead of the rotor. This requires rotor position information all the time. This information is accurately obtained with an ELM-based observer without the position sensor for PMSMs, and hence, the cost of the system is reduced, while the problems associated with the sensors are minimised.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Vehicle Autonomous Systems
International Journal of Vehicle Autonomous Systems Engineering-Automotive Engineering
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: The IJVAS provides an international forum and refereed reference in the field of vehicle autonomous systems research and development.
期刊最新文献
Development of autopilot control algorithm for an unmanned aerial vehicle based on simulation [Public policies for an intercultural approach to the health of Pu Mapuce Zomo]. Performance evaluation of low-resolution monocular vision-based velocity estimation technique for moving obstacle detection and tracking Traffic sign recognition using deep learning A new fractional-order sliding mode controller for the cruise control system of automatic vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1