使用机器学习技术检测DoS攻击

D. Kumar, V. Kukreja, Virender Kadyan, Mohit Mittal
{"title":"使用机器学习技术检测DoS攻击","authors":"D. Kumar, V. Kukreja, Virender Kadyan, Mohit Mittal","doi":"10.1504/ijvas.2020.10039658","DOIUrl":null,"url":null,"abstract":"As the growth of IoT has been further reinforced by the advances, when used with other technologies like embedded systems, hardware and software enhancements, networking devices, but still there are so many threats in IoT that includes security, accuracy, performance, networks, and privacy. With the increased use of smart services, remote access, and frequent changes in networks has raised many security and privacy concerns. Therefore, security threats in IoT are one of the main issues while data transmission. Thus, network challenges and security issues concerning to IoT can be resolved by using machine learning (ML) techniques and algorithms. The current study outlined the security standards for IoT applications to enhance the performance and efficiency of the network and user services. As well as, the study focus is on comparing the Support Vector Machine (SVM) and Decision Trees for the detection of Denial of Service (DoS) attacks.","PeriodicalId":39322,"journal":{"name":"International Journal of Vehicle Autonomous Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Detection of DoS attacks using machine learning techniques\",\"authors\":\"D. Kumar, V. Kukreja, Virender Kadyan, Mohit Mittal\",\"doi\":\"10.1504/ijvas.2020.10039658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the growth of IoT has been further reinforced by the advances, when used with other technologies like embedded systems, hardware and software enhancements, networking devices, but still there are so many threats in IoT that includes security, accuracy, performance, networks, and privacy. With the increased use of smart services, remote access, and frequent changes in networks has raised many security and privacy concerns. Therefore, security threats in IoT are one of the main issues while data transmission. Thus, network challenges and security issues concerning to IoT can be resolved by using machine learning (ML) techniques and algorithms. The current study outlined the security standards for IoT applications to enhance the performance and efficiency of the network and user services. As well as, the study focus is on comparing the Support Vector Machine (SVM) and Decision Trees for the detection of Denial of Service (DoS) attacks.\",\"PeriodicalId\":39322,\"journal\":{\"name\":\"International Journal of Vehicle Autonomous Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Autonomous Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijvas.2020.10039658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Autonomous Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijvas.2020.10039658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 10

摘要

随着物联网的发展,当与嵌入式系统、硬件和软件增强、网络设备等其他技术一起使用时,物联网的发展得到了进一步加强,但物联网仍然存在许多威胁,包括安全性、准确性、性能、网络和隐私。随着智能服务使用的增加,远程访问和网络的频繁变化引起了许多安全和隐私问题。因此,物联网中的安全威胁是数据传输中的主要问题之一。因此,有关物联网的网络挑战和安全问题可以通过使用机器学习(ML)技术和算法来解决。目前的研究概述了物联网应用的安全标准,以提高网络和用户服务的性能和效率。此外,研究重点是比较支持向量机(SVM)和决策树检测拒绝服务(DoS)攻击的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of DoS attacks using machine learning techniques
As the growth of IoT has been further reinforced by the advances, when used with other technologies like embedded systems, hardware and software enhancements, networking devices, but still there are so many threats in IoT that includes security, accuracy, performance, networks, and privacy. With the increased use of smart services, remote access, and frequent changes in networks has raised many security and privacy concerns. Therefore, security threats in IoT are one of the main issues while data transmission. Thus, network challenges and security issues concerning to IoT can be resolved by using machine learning (ML) techniques and algorithms. The current study outlined the security standards for IoT applications to enhance the performance and efficiency of the network and user services. As well as, the study focus is on comparing the Support Vector Machine (SVM) and Decision Trees for the detection of Denial of Service (DoS) attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Vehicle Autonomous Systems
International Journal of Vehicle Autonomous Systems Engineering-Automotive Engineering
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: The IJVAS provides an international forum and refereed reference in the field of vehicle autonomous systems research and development.
期刊最新文献
Development of autopilot control algorithm for an unmanned aerial vehicle based on simulation Performance evaluation of low-resolution monocular vision-based velocity estimation technique for moving obstacle detection and tracking Traffic sign recognition using deep learning A new fractional-order sliding mode controller for the cruise control system of automatic vehicles Decoupled 3-D object detector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1