地震荷载作用下纳米复合材料管道动力响应的机器学习模型

IF 5.3 Q1 ENGINEERING, MECHANICAL International Journal of Hydromechatronics Pub Date : 2020-01-01 DOI:10.1504/ijhm.2019.10026987
B. Keshtegar, M. Nehdi
{"title":"地震荷载作用下纳米复合材料管道动力响应的机器学习模型","authors":"B. Keshtegar, M. Nehdi","doi":"10.1504/ijhm.2019.10026987","DOIUrl":null,"url":null,"abstract":"Machine learning approaches including support vector regression (SVR) and multi-layer feedforward backpropagation neural network (FFBNN) were used in the present study along with classic theory for predicting maximum displacement of nanocomposite pipe conveying fluid under seismic load. The FFBNN consisted of three layers: 1) three neurons in input layer including length-to-radius ratio (L/R), fluid velocity (V) and volume percent of carbon nanotube; 2) hidden layer with 11 neurons obtained via trial and error; 3) maximum displacement-based seismic load. SVR model was obtained via three-input data with maximum likelihood estimator. Model predicted results were compared using three metrics, including Nash-Sutcliffe efficiency, root mean squared error and coefficient of correlation for 100 testing and 255 training data points. Results indicated that SVR achieved best predictions in the training phase, while FFBNN provided superior prediction in the testing phase. Increasing L/R, V and decreasing VCNT, increased maximum displacements under seismic load.","PeriodicalId":29937,"journal":{"name":"International Journal of Hydromechatronics","volume":"1 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Machine learning model for dynamical response of nano-composite pipe conveying fluid under seismic loading\",\"authors\":\"B. Keshtegar, M. Nehdi\",\"doi\":\"10.1504/ijhm.2019.10026987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning approaches including support vector regression (SVR) and multi-layer feedforward backpropagation neural network (FFBNN) were used in the present study along with classic theory for predicting maximum displacement of nanocomposite pipe conveying fluid under seismic load. The FFBNN consisted of three layers: 1) three neurons in input layer including length-to-radius ratio (L/R), fluid velocity (V) and volume percent of carbon nanotube; 2) hidden layer with 11 neurons obtained via trial and error; 3) maximum displacement-based seismic load. SVR model was obtained via three-input data with maximum likelihood estimator. Model predicted results were compared using three metrics, including Nash-Sutcliffe efficiency, root mean squared error and coefficient of correlation for 100 testing and 255 training data points. Results indicated that SVR achieved best predictions in the training phase, while FFBNN provided superior prediction in the testing phase. Increasing L/R, V and decreasing VCNT, increased maximum displacements under seismic load.\",\"PeriodicalId\":29937,\"journal\":{\"name\":\"International Journal of Hydromechatronics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydromechatronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijhm.2019.10026987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydromechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijhm.2019.10026987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 17

摘要

采用支持向量回归(SVR)和多层前馈反向传播神经网络(FFBNN)等机器学习方法,结合经典理论对纳米复合材料管道在地震荷载作用下的最大位移进行预测。FFBNN由三层组成:1)输入层有三个神经元,包括长半径比(L/R)、流体速度(V)和碳纳米管体积百分比;2)通过试错法获得包含11个神经元的隐藏层;3)基于最大位移的地震荷载。采用极大似然估计方法,通过三输入数据得到SVR模型。对100个测试数据点和255个训练数据点的模型预测结果使用三个指标进行比较,包括Nash-Sutcliffe效率、均方根误差和相关系数。结果表明,SVR在训练阶段的预测效果最好,而FFBNN在测试阶段的预测效果更好。增大L/R和V,减小VCNT,增大地震荷载作用下的最大位移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning model for dynamical response of nano-composite pipe conveying fluid under seismic loading
Machine learning approaches including support vector regression (SVR) and multi-layer feedforward backpropagation neural network (FFBNN) were used in the present study along with classic theory for predicting maximum displacement of nanocomposite pipe conveying fluid under seismic load. The FFBNN consisted of three layers: 1) three neurons in input layer including length-to-radius ratio (L/R), fluid velocity (V) and volume percent of carbon nanotube; 2) hidden layer with 11 neurons obtained via trial and error; 3) maximum displacement-based seismic load. SVR model was obtained via three-input data with maximum likelihood estimator. Model predicted results were compared using three metrics, including Nash-Sutcliffe efficiency, root mean squared error and coefficient of correlation for 100 testing and 255 training data points. Results indicated that SVR achieved best predictions in the training phase, while FFBNN provided superior prediction in the testing phase. Increasing L/R, V and decreasing VCNT, increased maximum displacements under seismic load.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
32
期刊最新文献
A comparative study of energy-efficient clustering protocols for WSN-internet-of-things A mayfly optimisation method to predict load settlement of reinforced railway tracks on soft subgrade with multi-layer geogrid Parameter optimization design of mixing and distributing system of vertical biaxial bladed mixer Research on singular point characteristics and parameter bifurcation of single DOF nonlinear autonomous bearing system of magnetic-liquid double suspension bearing An improved gated convolutional neural network for rolling bearing fault diagnosis with imbalanced data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1