自监督学习的工具磨损监测与解纠缠变分自编码器

IF 5.3 Q1 ENGINEERING, MECHANICAL International Journal of Hydromechatronics Pub Date : 2021-01-01 DOI:10.1504/IJHM.2021.10035377
T. Hahn, C. Mechefske
{"title":"自监督学习的工具磨损监测与解纠缠变分自编码器","authors":"T. Hahn, C. Mechefske","doi":"10.1504/IJHM.2021.10035377","DOIUrl":null,"url":null,"abstract":": The use of end-to-end deep learning in machinery health monitoring allows machine learning models to be created without the need for feature engineering. The research presented here expands on this use in the context of tool wear monitoring. A disentangled-variational-autoencoder, with a temporal convolutional neural network, is used to model and trend tool wear in a self-supervised manner, and anomaly detection is used to make predictions from both the input and latent spaces. The method achieves a precision-recall area-under-curve (PR-AUC) score of 0.45 across all cutting parameters on a milling dataset, and a top score of 0.80 for shallow depth cuts. The method achieves a top PR-AUC score of 0.41 on a real-world industrial CNC dataset, but the method does not generalise as well across the broad range of manufactured parts. The benefits of the approach, along with the drawbacks, are discussed in detail.","PeriodicalId":29937,"journal":{"name":"International Journal of Hydromechatronics","volume":"1 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Self-supervised learning for tool wear monitoring with a disentangled-variational-autoencoder\",\"authors\":\"T. Hahn, C. Mechefske\",\"doi\":\"10.1504/IJHM.2021.10035377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The use of end-to-end deep learning in machinery health monitoring allows machine learning models to be created without the need for feature engineering. The research presented here expands on this use in the context of tool wear monitoring. A disentangled-variational-autoencoder, with a temporal convolutional neural network, is used to model and trend tool wear in a self-supervised manner, and anomaly detection is used to make predictions from both the input and latent spaces. The method achieves a precision-recall area-under-curve (PR-AUC) score of 0.45 across all cutting parameters on a milling dataset, and a top score of 0.80 for shallow depth cuts. The method achieves a top PR-AUC score of 0.41 on a real-world industrial CNC dataset, but the method does not generalise as well across the broad range of manufactured parts. The benefits of the approach, along with the drawbacks, are discussed in detail.\",\"PeriodicalId\":29937,\"journal\":{\"name\":\"International Journal of Hydromechatronics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydromechatronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJHM.2021.10035377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydromechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJHM.2021.10035377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 44

摘要

:在机器健康监测中使用端到端深度学习可以创建机器学习模型,而无需进行特征工程。本文提出的研究在工具磨损监测的背景下扩展了这种应用。使用带有时间卷积神经网络的解纠缠变分自编码器以自监督的方式对工具磨损进行建模和趋势分析,并使用异常检测从输入空间和潜在空间进行预测。该方法在铣削数据集的所有切削参数中实现了精确召回率曲线下面积(PR-AUC)得分为0.45,对于浅深度切削,最高得分为0.80。该方法在现实世界的工业CNC数据集上实现了0.41的最高PR-AUC得分,但该方法不能在广泛的制造零件范围内进行推广。详细讨论了该方法的优点和缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-supervised learning for tool wear monitoring with a disentangled-variational-autoencoder
: The use of end-to-end deep learning in machinery health monitoring allows machine learning models to be created without the need for feature engineering. The research presented here expands on this use in the context of tool wear monitoring. A disentangled-variational-autoencoder, with a temporal convolutional neural network, is used to model and trend tool wear in a self-supervised manner, and anomaly detection is used to make predictions from both the input and latent spaces. The method achieves a precision-recall area-under-curve (PR-AUC) score of 0.45 across all cutting parameters on a milling dataset, and a top score of 0.80 for shallow depth cuts. The method achieves a top PR-AUC score of 0.41 on a real-world industrial CNC dataset, but the method does not generalise as well across the broad range of manufactured parts. The benefits of the approach, along with the drawbacks, are discussed in detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
32
期刊最新文献
A comparative study of energy-efficient clustering protocols for WSN-internet-of-things A mayfly optimisation method to predict load settlement of reinforced railway tracks on soft subgrade with multi-layer geogrid Parameter optimization design of mixing and distributing system of vertical biaxial bladed mixer Research on singular point characteristics and parameter bifurcation of single DOF nonlinear autonomous bearing system of magnetic-liquid double suspension bearing An improved gated convolutional neural network for rolling bearing fault diagnosis with imbalanced data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1