{"title":"支持腹主动脉瘤治疗的多模式生物力学方法","authors":"N. Róbert, Bojtár Imre","doi":"10.15289/bh.v8i2.188","DOIUrl":null,"url":null,"abstract":"In clinical practice, management of abdominal aortic aneurysms (AAA) is predominantly based on the diameter of the lumen. State-of-the-art fluid structure interaction (FSI) simulations have proven to be superior in estimating rupture risk, although they still have considerable shortcomings. In this paper we address one such unresolved problem, and present the outline of biomechanical material parameter distribution identification via inverse finite element (FE) analysis. Our method is based on the non invasive approximation of the displacement field using electrocardiogram-gated computer tomography angiography (ECG-gated CT-angiography, CTA) and estimating the load field with usual computational fluid dynamics (CFD) simulations. Parameters of our model connecting the two abovementioned sets of variables result from an optimization algorithm minimizing a work and energy related variational functional. Consequently, also supported by experimental measurements, we are able to assess local distribution of the biomechanical material properties of the arterial wall and give a functional characterization of vessel wall degeneration. DOI: 10.17489/biohun/2015/2/06 Normal 0 21 false false false HU X-NONE X-NONE /* Style Definitions */ \n table.MsoNormalTable \n {mso-style-name:\"Normal tablazat\"; \n mso-tstyle-rowband-size:0; \n mso-tstyle-colband-size:0; \n mso-style-noshow:yes; \n mso-style-priority:99; \n mso-style-qformat:yes; \n mso-style-parent:\"\"; \n mso-padding-alt:0cm 5.4pt 0cm 5.4pt; \n mso-para-margin:0cm; \n mso-para-margin-bottom:.0001pt; \n mso-pagination:widow-orphan; \n font-size:11.0pt; \n font-family:\"Calibri\",\"sans-serif\"; \n mso-bidi-font-family:\"Times New Roman\";}","PeriodicalId":30208,"journal":{"name":"Biomechanica Hungarica","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal biomechanical methods supporting abdominal aortic aneurysm management\",\"authors\":\"N. Róbert, Bojtár Imre\",\"doi\":\"10.15289/bh.v8i2.188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In clinical practice, management of abdominal aortic aneurysms (AAA) is predominantly based on the diameter of the lumen. State-of-the-art fluid structure interaction (FSI) simulations have proven to be superior in estimating rupture risk, although they still have considerable shortcomings. In this paper we address one such unresolved problem, and present the outline of biomechanical material parameter distribution identification via inverse finite element (FE) analysis. Our method is based on the non invasive approximation of the displacement field using electrocardiogram-gated computer tomography angiography (ECG-gated CT-angiography, CTA) and estimating the load field with usual computational fluid dynamics (CFD) simulations. Parameters of our model connecting the two abovementioned sets of variables result from an optimization algorithm minimizing a work and energy related variational functional. Consequently, also supported by experimental measurements, we are able to assess local distribution of the biomechanical material properties of the arterial wall and give a functional characterization of vessel wall degeneration. DOI: 10.17489/biohun/2015/2/06 Normal 0 21 false false false HU X-NONE X-NONE /* Style Definitions */ \\n table.MsoNormalTable \\n {mso-style-name:\\\"Normal tablazat\\\"; \\n mso-tstyle-rowband-size:0; \\n mso-tstyle-colband-size:0; \\n mso-style-noshow:yes; \\n mso-style-priority:99; \\n mso-style-qformat:yes; \\n mso-style-parent:\\\"\\\"; \\n mso-padding-alt:0cm 5.4pt 0cm 5.4pt; \\n mso-para-margin:0cm; \\n mso-para-margin-bottom:.0001pt; \\n mso-pagination:widow-orphan; \\n font-size:11.0pt; \\n font-family:\\\"Calibri\\\",\\\"sans-serif\\\"; \\n mso-bidi-font-family:\\\"Times New Roman\\\";}\",\"PeriodicalId\":30208,\"journal\":{\"name\":\"Biomechanica Hungarica\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanica Hungarica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15289/bh.v8i2.188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanica Hungarica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15289/bh.v8i2.188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在临床实践中,腹主动脉瘤(AAA)的治疗主要是基于管腔的直径。最先进的流体结构相互作用(FSI)模拟在估计破裂风险方面已经被证明是优越的,尽管它们仍然存在相当大的缺点。在本文中,我们解决了这样一个尚未解决的问题,并提出了生物力学材料参数分布识别的轮廓,通过反有限元(FE)分析。我们的方法是基于使用心电图门控计算机断层扫描血管成像(ecg门控ct血管成像,CTA)对位移场的无创近似和使用通常的计算流体动力学(CFD)模拟估计负载场。连接上述两组变量的模型参数是由最小化功和能量相关变分函数的优化算法得到的。因此,在实验测量的支持下,我们能够评估动脉壁生物力学材料特性的局部分布,并给出血管壁变性的功能表征。DOI: 10.17489/biohun/2015/2/06 Normal 0 21 false false false HU X-NONE X-NONE /*样式定义*/表。mso-style-name:"Normal tablazat";mso-tstyle-rowband-size: 0;mso-tstyle-colband-size: 0;mso-style-noshow:是的;mso-style-priority: 99;mso-style-qformat:是的;mso-style-parent:“”;Mso-padding-alt:0cm 5.4pt;mso-para-margin: 0厘米;mso-para-margin-bottom: .0001pt;mso-pagination: widow-orphan;字体大小:11.0分;字体类型:“Calibri”、“无衬线”;mso-bidi-font-family:宋体;
In clinical practice, management of abdominal aortic aneurysms (AAA) is predominantly based on the diameter of the lumen. State-of-the-art fluid structure interaction (FSI) simulations have proven to be superior in estimating rupture risk, although they still have considerable shortcomings. In this paper we address one such unresolved problem, and present the outline of biomechanical material parameter distribution identification via inverse finite element (FE) analysis. Our method is based on the non invasive approximation of the displacement field using electrocardiogram-gated computer tomography angiography (ECG-gated CT-angiography, CTA) and estimating the load field with usual computational fluid dynamics (CFD) simulations. Parameters of our model connecting the two abovementioned sets of variables result from an optimization algorithm minimizing a work and energy related variational functional. Consequently, also supported by experimental measurements, we are able to assess local distribution of the biomechanical material properties of the arterial wall and give a functional characterization of vessel wall degeneration. DOI: 10.17489/biohun/2015/2/06 Normal 0 21 false false false HU X-NONE X-NONE /* Style Definitions */
table.MsoNormalTable
{mso-style-name:"Normal tablazat";
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-qformat:yes;
mso-style-parent:"";
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin:0cm;
mso-para-margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:11.0pt;
font-family:"Calibri","sans-serif";
mso-bidi-font-family:"Times New Roman";}