{"title":"基于实验和模型数据的海冰覆盖温度和盐度分布(以日本海Novik湾为例)","authors":"A. N. Chetyrbotsky, A. U. Lazaryuk","doi":"10.15356/2076-6734-2018-4-559-568","DOIUrl":null,"url":null,"abstract":"Analysis of sample distributions of temperature and salinity within depths of sea ice allowed revealing a high negative correlation between temperature of the surface air layer and the salinity vertical distribution across the ice thickness. Tis situation is explained by the fact that when temperature inside the ice rises the vertically oriented pores flled with brine, and this causes increased flow of brine. But when the temperature of the thickness drops, volumes of these pores signifcantly decrease, and as a result of that stresses near the pores grow and brine is squeezed out to both above and under the ice. Comparison of individual cases of the sample salinity distributions made possible to determine that the temperature of the surface air layer signifcantly influences the freezing intensity. When developing a model of spatiotemporal dynamics of the temperature, the diffusion mechanism of its vertical distribution is adopted, where the thermal conductivity coefcient is a linear function of temperature. A computational scheme for solving the model equations had been developed. Te procedure to estimate the model parameters is given. Te results of the parameter estimations had proved the adequacy of both the sample and the model distributions. A degree of the adequacy is the correlation coefcient between the above distributions. It is shown that the numerical simulation of the spatiotemporal salinity dynamics can be performed in framework of the diffusion mechanism of the vertical distribution, where the diffusion coefcient is a linear function of temperature. Te results of the parameter estimations did also show the adequacy of both the sample and the model distributions.","PeriodicalId":43880,"journal":{"name":"Led i Sneg-Ice and Snow","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2018-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature and salinity distribution of sea ice cover according to experimental and model data (case study of Novik Bay of the Sea of Japan)\",\"authors\":\"A. N. Chetyrbotsky, A. U. Lazaryuk\",\"doi\":\"10.15356/2076-6734-2018-4-559-568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analysis of sample distributions of temperature and salinity within depths of sea ice allowed revealing a high negative correlation between temperature of the surface air layer and the salinity vertical distribution across the ice thickness. Tis situation is explained by the fact that when temperature inside the ice rises the vertically oriented pores flled with brine, and this causes increased flow of brine. But when the temperature of the thickness drops, volumes of these pores signifcantly decrease, and as a result of that stresses near the pores grow and brine is squeezed out to both above and under the ice. Comparison of individual cases of the sample salinity distributions made possible to determine that the temperature of the surface air layer signifcantly influences the freezing intensity. When developing a model of spatiotemporal dynamics of the temperature, the diffusion mechanism of its vertical distribution is adopted, where the thermal conductivity coefcient is a linear function of temperature. A computational scheme for solving the model equations had been developed. Te procedure to estimate the model parameters is given. Te results of the parameter estimations had proved the adequacy of both the sample and the model distributions. A degree of the adequacy is the correlation coefcient between the above distributions. It is shown that the numerical simulation of the spatiotemporal salinity dynamics can be performed in framework of the diffusion mechanism of the vertical distribution, where the diffusion coefcient is a linear function of temperature. Te results of the parameter estimations did also show the adequacy of both the sample and the model distributions.\",\"PeriodicalId\":43880,\"journal\":{\"name\":\"Led i Sneg-Ice and Snow\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Led i Sneg-Ice and Snow\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15356/2076-6734-2018-4-559-568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Led i Sneg-Ice and Snow","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15356/2076-6734-2018-4-559-568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Temperature and salinity distribution of sea ice cover according to experimental and model data (case study of Novik Bay of the Sea of Japan)
Analysis of sample distributions of temperature and salinity within depths of sea ice allowed revealing a high negative correlation between temperature of the surface air layer and the salinity vertical distribution across the ice thickness. Tis situation is explained by the fact that when temperature inside the ice rises the vertically oriented pores flled with brine, and this causes increased flow of brine. But when the temperature of the thickness drops, volumes of these pores signifcantly decrease, and as a result of that stresses near the pores grow and brine is squeezed out to both above and under the ice. Comparison of individual cases of the sample salinity distributions made possible to determine that the temperature of the surface air layer signifcantly influences the freezing intensity. When developing a model of spatiotemporal dynamics of the temperature, the diffusion mechanism of its vertical distribution is adopted, where the thermal conductivity coefcient is a linear function of temperature. A computational scheme for solving the model equations had been developed. Te procedure to estimate the model parameters is given. Te results of the parameter estimations had proved the adequacy of both the sample and the model distributions. A degree of the adequacy is the correlation coefcient between the above distributions. It is shown that the numerical simulation of the spatiotemporal salinity dynamics can be performed in framework of the diffusion mechanism of the vertical distribution, where the diffusion coefcient is a linear function of temperature. Te results of the parameter estimations did also show the adequacy of both the sample and the model distributions.
期刊介绍:
The journal was established with the aim of publishing new research results of the Earth cryosphere. Results of works in physics, mechanics, geophysics, and geochemistry of snow and ice are published here together with geographical aspects of the snow-ice phenomena occurrence in their interaction with other components of the environment. The challenge was to discuss the latest results of investigations carried out on Russia’s territory and works performed by Russian investigators together with foreign colleagues. Editorial board works in collaboration with Glaciological Association that is professional community of specialists in glaciology from all republics of the Former Soviet Union which are now new independent states. The journal serves as a platform for the presentation and discussion of new discoveries and results which help to elucidate the state of the Earth’s cryosphere and the characteristics of the evolution of the snow-ice processes and phenomena under the current conditions of rapid climate change.